|
|
Lipase-catalyzed Knoevenagel condensation between α, β-unsaturated aldehydes and active methylene compounds |
Zhi Wanga, Chun-Yu Wangc, Hao-Ran Wanga, Hong Zhanga, Ya-Lun Sub, Teng-Fei Jib, Lei Wanga |
a Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130023, China;
b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
c State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130023, China |
|
|
Abstract A simple and efficient Knoevenagel condensation between α,β-unsaturated aldehydes and active methylene compounds is reported. Notably, this condensation can be catalyzed by PPL (lipase from porcine pancreas) with satisfied yields (49%-92%). Moreover, PPL induces moderate Z/E selectivity in the Knoevenagel condensation.
|
Received: 15 January 2014
Published: 05 April 2014
|
Fund: The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 21172093, 31070708, and 21072075), the Natural Science Foundation of Jilin Province of China (Nos. 201115039 and 20140101141JC) and the Scientific Research Fund of Jilin University (No. 450060326007). |
Corresponding Authors:
Teng-Fei Ji, Lei Wang
E-mail: jitf@imm.ac.cn;w_lei@jlu.edu.cn
|
|
|
|
[3] |
M.T. Reetz, R. Mondiere, J.D. Carballeira, Enzyme promiscuity: first proteincatalyzed Morita-Baylis-Hillman reaction, Tetrahedron Lett. 48 (2007) 1679- 1681.
|
[7] |
M. Oguchi, K. Wada, H. Honma, et al., Molecular design, synthesis, and hypoglycemic activity of a series of thiazolidine-2,4-diones, J. Med. Chem. 43 (2000) 3052-3066.
|
[4] |
M. Svedendahl, K. Hult, P. Berglund, Fast carbon-carbon bond formation by a promiscuous lipase, J. Am. Chem. Soc. 127 (2005) 17988-17989.
|
[15] |
M. James, A.S. Jennifer, W. Sonja, The ultrasound promoted Knoevenagel condensation of aromatic aldehydes, Tetrahedron Lett. 39 (1998) 8013-8016.
|
[1] |
I. Nobeli, A.D. Favia, J.M. Thornton, Protein promiscuity and its implications for biotechnology, Nat. Biotechnol. 27 (2009) 157-167.
|
[8] |
M.S. Malamas, J. Sredy, I. Gunawan, et al., New azolidinediones as inhibitors of protein tyrosine phosphatase lb with antihyperglycemic properties, J. Med. Chem. 43 (2000) 995-1010.
|
[9] |
R. Murugan, S. Anbazhagan, S. Sriman Narayanan, Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3 + 2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives, Eur. J. Med. Chem. 44 (2009) 3272-3279.
|
[10] |
C.B. Yue, A.Q. Mao, Y.Y. Wei, M.J. Lü, Knoevenagel condensation reaction catalyzed by task-specific ionic liquid under solvent-free conditions, Catal. Commun. 9 (2008) 1571-1574.
|
[2] |
A.B. Majumder, N.G. Ramesh, M.N. Gupta, A lipase catalyzed condensation reaction with a tricyclic diketone: yet another example of biocatalytic promiscuity, Tetrahedron Lett. 50 (2009) 5190-5193.
|
[6] |
M.A. Ibrahim, M.A.M. Abdel-Hamed, N.M. El-Gohary, A new approach for the synthesis of bioactive heteroaryl thiazolidine-2,4-diones, J. Braz. Chem. Soc. 22 (2011) 1130-1139.
|
[11] |
G.W. Li, J. Xiao, W.Q. Zhang, Highly efficient Knoevenagel condensation reactions catalyzed by a proline-functionalized polyacrylonitrile fiber, Chin. Chem. Lett. 24 (2013) 52-54.
|
[12] |
K.P. Boroujeni, M. Jafarinasab, Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation, Chin. Chem. Lett. 23 (2012) 1067-1070.
|
[13] |
F. Marta, O. Monica, P. Laura, I. Achille, Electrochemically induced Knoevenagel condensation in solvent- and supporting electrolyte-free conditions, Green Chem. 9 (2007) 323-325.
|
[16] |
Y.F. Lai, H. Zheng, S.J. Chai, P.F. Zhang, X.Z. Chen, Lipase-catalysed tandem Knoevenagel condensation and esterification with alcohol cosolvents, Green Chem. 12 (2010) 1917-1918.
|
[21] |
E.N. Xun, J.X. Wang, H. Zhang, et al., Resolution of N-hydroxymethyl vince lactam catalyzed by lipase in organic solvent, J. Chem. Technol. Biotechnol. 88 (2013) 904-909.
|
[22] |
A.B. Martins, J.L.R. Friedrich, J.C. Cavalheiro, et al., Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene- divinylbenzene beads, Bioresour. Technol. 134 (2013) 417-422.
|
[23] |
Y.S. Lin, P.Y. Wang, A.C. Wu, S.W. Tsai, Lipase-catalyzed enantioselective resolution of (R,S)-N-2-methylalkanoyl-3-(2-pyridyl)pyrazoles in organic solvents, J. Mol. Catal. B: Enzym. 68 (2011) 245-249.
|
[5] |
X.F. Wei, Q.C. Zheng, T.F. Ji, et al., Addition of diethylzinc to aromatic aldehydes catalyzed by hydrolase, Chin. J. Catal. 30 (2009) 396-400.
|
[14] |
S. Balalaie, N. Nemati, Ammonium acetate-basic alumina catalyzed Knoevenagel condensation under microwave irradiation under solvent-free condition, Synth. Commun. 30 (2000) 869-875.
|
[17] |
W. Hua, Z. Guan, X. Deng, Y.H. He, Enzyme catalytic promiscuity: the papaincatalyzed Knoevenagel reaction, Biochimie 94 (2012) 656-661.
|
[20] |
Z. Wang, R. Wang, J. Tian, et al., The effect of ultrasound on lipase-catalyzed regioselective acylation of mangiferin in non-aqueous solvents, J. Asian Nat. Prod. Res. 12 (2010) 56-63.
|
[18] |
L. Wang, J.D. Tai, R. Wang, et al., Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis, Biotechnol. Appl. Biochem. 56 (2010) 1-6.
|
[19] |
R. Tian, C.H. Yang, X.F. Wei, et al., Optimization of APE1547-catalyzed enantioselective transesterification of (R/S)-2-methyl-1-butanol in an ionic liquid, Biotechnol. Bioproc. E 16 (2011) 337-342.
|
|
|
|