|
|
Enhanced deep-red emission in donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl |
Yue Shena, Xiaohui Tanga, Yuwei Xub, Haichao Liua, Shitong Zhanga, Bing Yanga, Yuguang Mab |
a State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
b State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China |
|
|
Guide Cyanophenyl as ancillary acceptor to modify donor-acceptor compound,plays an effective role in shifting the emission color to deep red and maintaining the luminescent efficiency. |
|
Abstract Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years. Constructing donor-acceptor (D-A) type molecules has been one of most commonly used strategies to achieve deep-red emission, but it is always difficult to achieve high photoluminescence (PL) quantum yield (ηPL) due to forbidden charge-transfer state. Herein, we report a new D-A type molecule 4-(7-(4-(diphenylamino)phenyl)-9-oxo-9H-fluoren-2-yl)benzonitrile (TPAFOCN), deriving from donor-acceptor-donor (D-A-D) type 2,7-bis(4-(diphenylamino)phenyl)-9H-fluoren-9-one (DTPA-FO) with a fluorescence maximum of 627 nm in solids. This molecular design enables a transformation of acceptor from fluorenone (FO) itself to 4-(9-oxo-9H-fluoren-2-yl) benzonitrile (FOCN). Compared with DTPA-FO, the introduction of cyanophenyl not only shifts the emission of TPA-FOCN to deep red with a fluorescence maximum of 668 nm in solids, but also maintains the high ηPL of 10%. Additionally, a solution-processed non-doped organic light-emitting diode (OLED) was fabricated with TPA-FOCN as emitter. TPA-FOCN device showed a maximum luminous efficiency of 0.13 cd/A and a maximum external quantum efficiency (EQE) of 0.22% with CIE coordinates of (0.64, 0.35). This work provides a valuable strategy for the rational design of high-efficiency deep-red emission materials using cyanophenyl as an ancillary acceptor.
|
Received: 25 June 2019
|
Fund: This work is supported by the National Natural Science Foundation of China (Nos. 91833304, 51873077, 51803071 and 51673083), the National Basic Research Program of China (Nos. 2015CB655003 and 2016YFB0401001), the Postdoctoral Innovation Talent Support Project (Nos. BX201700097 and BX20180121), the China Postdoctoral Science Foundation (Nos. 2017M620108 and 2018M641767) and JLUSTIRT (No. 2019TD-33). |
Corresponding Authors:
Haichao Liu, Bing Yang
E-mail: hcliu@jlu.edu.cn;yangbing@jlu.edu.cn
|
|
|
|
[1] |
L. Yao, S. Zhang, R. Wang, et al., Angew. Chem. Int. Ed. 53(2014) 2119-2123.
|
[2] |
W. Li, Y. Pan, R. Xiao, et al., Adv. Funct. Mater. 24(2014) 1609-1614.
|
[3] |
S. Wang, X. Yan, Z. Cheng, et al., Angew. Chem. Int. Ed. 54(2015) 13068-13072.
|
[4] |
Y. Zhang, Y. Wang, J. Song, et al., Adv. Opt. Mater. 6(2018) 1800466.
|
[5] |
J. Xue, C. Li, L. Xin, L. Duan, J. Qiao, Chem. Sci. 7(2016) 2888-2895.
|
[6] |
Y. Yuan, Y. Hu, Y.X. Zhang, et al., Adv. Funct. Mater. 27(2017) 1700986.
|
[7] |
K.T. Ly, R.W. Chen-Cheng, H.W. Lin, et al., Nat. Photonics 11(2016) 63-68.
|
[8] |
I. Garcia-Moreno, A. Costela, V. Martin, M. Pintado-Sierra, R. Sastre, Adv. Funct. Mater. 19(2009) 2547-2552.
|
[9] |
W. Qin, K. Li, G. Feng, et al., Adv. Funct. Mater. 24(2014) 635-643.
|
[10] |
J. Zhang, R. Chen, Z. Zhu, et al., ACS Appl. Mater. Interfaces 7(2015) 26266-26274.
|
[11] |
J.V. Caspar, E.M. Kober, B.P. Sullivan, T.J. Meyer, J. Am. Chem. Soc. 104(1982) 630-632.
|
[12] |
S.D. Cummings, R. Eisenberg, J. Am. Chem. Soc. 118(1996) 1949-1960.
|
[13] |
C.T. Chen, Chem. Mater. 16(2004) 4389-4400.
|
[14] |
K.R. Graham, Y. Yang, J.R. Sommer, et al., Chem. Mater. 23(2011) 5305-5312.
|
[15] |
K.R.J. Thomas, J.T. Lin, M. Velusamy, Y.T. Tao, C.H. Chuen, Adv. Funct. Mater. 14(2004) 83-90.
|
[16] |
M. Shimizu, R. Kaki, Y. Takeda, et al., Angew. Chem. Int. Ed. 51(2012) 4095-4099.
|
[17] |
Q. Zhang, H. Kuwabara, W.J. Potscavage Jr., et al., J. Am. Chem. Soc. 136(2014) 18070-18081.
|
[18] |
X. Han, Q. Bai, L. Yao, et al., Adv. Funct. Mater. 25(2015) 7521-7529.
|
[19] |
Y. Zhang, D. Zhang, M. Cai, et al., Nanotechnology 27(2016) 094001.
|
[20] |
S. Wang, Z. Cheng, X. Song, et al., ACS Appl. Mater. Interfaces 9(2017) 9892-9901.
|
[21] |
X.O. Gong, P.K. Iyer, D. Moses, et al., Adv. Funct. Mater. 13(2003) 325-330.
|
[22] |
W. Porzio, S. Destri, U. Giovanella, et al., Thin Solid Films 492(2005) 212-220.
|
[23] |
W. Porzio, S. Destri, M. Pasini, et al., Synth. Met. 159(2009) 513-517.
|
[24] |
P. Sonar, T.J. Ha, A. Dodabalapur, Chem. Commun. 49(2013) 1588-1590.
|
[25] |
L.F. Lai, C. Qin, C.H. Chui, et al., Dyes Pigments 98(2013) 428-436.
|
[26] |
L.C. Chi, H.F. Chen, W.Y. Hung, et al., Sol. Energy Mater. Sol. Cells 109(2013) 33-39.
|
[27] |
A.L. Capodilupo, V. Vergaro, E. Fabiano, et al., J. Mater. Chem. B 3(2015) 3315-3323.
|
[28] |
A.L. Capodilupo, V. Vergaro, G. Accorsi, et al., Tetrahedron 72(2016) 2920-2928.
|
[29] |
Y. Duan, C. Ju, G. Yang, et al., Adv. Funct. Mater. 26(2016) 8968-8977.
|
[30] |
E. Zojer, A. Pogantsch, E. Hennebicq, et al., J. Chem. Phys. 117(2002) 6794-6802.
|
[31] |
Y. Liu, X. Tao, F. Wang, et al., J. Phys. Chem. C 112(2008) 3975-3981.
|
[32] |
Z.R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 103(2003) 3899-4031.
|
[33] |
C. Wang, X.L. Li, Y. Gao, et al., Adv. Opt. Mater. 5(2017) 1700441.
|
[34] |
T. Liu, L. Zhu, C. Zhong, et al., Adv. Funct. Mater. 27(2017) 1606384.
|
[35] |
X. Tang, X.L. Li, H. Liu, et al., Dyes Pigments 149(2018) 430-436.
|
[36] |
Y. Gao, S. Zhang, Y. Pan, et al., Phys. Chem. Chem. Phys. 18(2016) 24176-24184.
|
[37] |
W. Li, Y. Pan, L. Yao, et al., Adv. Opt. Mater. 2(2014) 892-901.
|
[38] |
Y. Pan, W. Li, S. Zhang, et al., Adv. Opt. Mater. 2(2014) 510-515.
|
[39] |
S. Zhang, W. Li, L. Yao, et al., Chem. Commun. 49(2013) 11302-11304.
|
[40] |
S. Zhang, L. Yao, Q. Peng, et al., Adv. Funct. Mater. 25(2015) 1755-1762.
|
[41] |
C. Zhou, D. Cong, Y. Gao, et al., J. Phys. Chem. C 122(2018) 18376-18382.
|
[42] |
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492(2012) 234-240.
|
[1] |
Wenbo Yuan, Hannan Yang, Mucan Zhang, Die Hu, Shigang Wan, Zijing Li, Changsheng Shi, Ning Sun, Youtian Tao, Wei Huang. Molecular engineering on all ortho-linked carbazole/oxadiazole hybrids toward highly-efficient thermally activated delayed fluorescence materials in OLEDs[J]. Chinese Chemical Letters, 2019, 30(11): 1955-1958. |
|
|
|
|