|
|
Recent advances in photofunctional polymorphs of molecular materials |
Bo Lu, Shuya Liu, Dongpeng Yan |
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China |
|
|
Guide Crystalline polymorph is an intriguing phenomenon that the presence of multiple packing and aggregate architectures of the same molecular system.In this review,we focus on the recent progress in various feasible methods of molecule-based crystalline polymorphism growth,their adjustable photofunctional properties and multifunctional applications,which will help to illustrate the structure-property relationship. |
|
Abstract Recently, molecule-based luminescent materials have been drawing extensive attention due to their desirable properties and promising applications in the fields of sensors, lighting display and cell imaging. Crystalline polymorph is an intriguing phenomenon that the presence of multiple packing and aggregate architectures of the same molecular system. The studies on polymorphs for molecule-based fluorophores provide the opportunities to adjust the mode of molecular packing and photophysical properties, which will help to illustrate the structure-property relationship. In this review, we focus on the recent progress in various feasible methods of molecule-based crystalline polymorphism growth and their adjustable photofunctional properties, which will open up possibilities of variant optical applications. Firstly, several effective ways to prepare and screen polymorphs are sorted out. And then, we discuss the discrepant properties and multifunctional applications (such as sensors, laser and OFET). Finally, the development trends and future prospects of these polymorphs are also briefly introduced.
|
Received: 09 August 2019
|
Fund: This work was supported by the National Natural Science Foundation of China (Nos. 21771021 and 21822501), the Beijing Nova Program (No. xx2018115), the Fundamental Research Funds for the Central Universities, and Analytical and Measurements Fund of Beijing Normal University. |
Corresponding Authors:
Dongpeng Yan
E-mail: yandongpeng001@163.com,yandp@bnu.edu.cn
|
|
|
|
[1] |
D. Fox, M.M. Labes, A. Weissberger, Physics and Chemistry of the Organic Solid State, Wiley Interscience, New York, 1965, pp. 725-767.
|
[2] |
J. Bernstein, Polymorphism in Molecular Crystals, Oxford Univ. Press, 2002.
|
[3] |
S.L. Price, Phys. Chem. Chem. Phys. 10(2008) 1996-2009.
|
[4] |
S.L. Price, Acc. Chem. Res. 42(2009) 117-126.
|
[5] |
R.Hilfiker,M.vonRaumer,PolymorphisminthePharmaceuticalIndustry:Solid Form and Drug Development, Wiley-VCH Verlag GmbH, Weinheim, 2019.
|
[6] |
N. Marom, R.A. DiStasio Jr., V. Atalla, et al., Angew. Chem. Int. Ed. 52(2013) 6629-6632.
|
[7] |
A.M. Reilly, A. Tkatchenko, Phys. Rev. Lett. 113(2014) 055701.
|
[8] |
S.L. Price, Chem. Soc. Rev. 43(2014) 2098-2111.
|
[9] |
M.A. Neumann, J. van de Streek, F.P.A. Fabbiani, P. Hidber, O. Grassmann, Nat. Commun. 6(2015) 7793.
|
[10] |
G.J.O. Beran, Chem. Rev. 116(2016) 5567-5613.
|
[11] |
C. Guo, J. Wang, J. Li, Z. Wang, S. Tang, J. Phys. Chem. Lett. 7(2016) 5008-5014.
|
[12] |
J. Li, J. Sun, Acc. Chem. Res. 50(2017) 2737-2745.
|
[13] |
P.M. Piaggi, M. Parrinello, Proc. Natl. Acad. Sci. U. S. A.115(2018) 10251-10256.
|
[14] |
F. Musil, S. De, J. Yang, et al., Chem. Sci. 9(2018) 1289-1300.
|
[15] |
J. Yang, S. De, J.E. Campbell, et al., Chem. Mater. 30(2018) 4361-4371.
|
[16] |
J.F. Xu, H.H. Chen, Y.Z. Chen, et al., Sens. Actuators B -Chem.168(2012) 14-19.
|
[17] |
Y. Zhang, S. Li, G. Pan, et al., Sens. Actuators B -Chem. 254(2018) 785-794.
|
[18] |
B. Zhao, G. Xie, H. Wang, C. Han, H. Xu, Chem. Eur. J. 25(2019) 1010-1017.
|
[19] |
I. Hladka, D. Volyniuk, O. Bezvikonnyi, et al., J. Mater. Chem. C 6(2018) 13179-13189.
|
[20] |
K. Zhou, H. Bai, L. Feng, J. Dai, M. Cui, Anal. Chem. 89(2017) 9432-9437.
|
[21] |
Y. Li, K. Wang, K. Zhou, et al., Chem. Commun. 54(2018) 8717-8720.
|
[22] |
C. Grivas, M. Pollnau, Laser Photonics Rev. 6(2012) 419-462.
|
[23] |
H. Dong, C. Zhang, Y.S. Zhao, J. Mater. Chem. C 5(2017) 5600-5609.
|
[24] |
D. Yan, A. Delori, G.O. Lloyd, et al., Angew. Chem. Int. Ed. 50(2011) 12483-12486.
|
[25] |
A.J. Cruz-Cabeza, J. Bernstein, Chem. Rev. 114(2014) 2170-2191.
|
[26] |
D. Yan, H. Yang, Q. Meng, H. Lin, M. Wei, Adv. Funct. Mater. 24(2014) 587-597.
|
[27] |
W.H. Fang, J. Am. Chem. Soc. 121(1999) 8376-8384.
|
[28] |
W.H. Fang, Acc. Chem. Res. 41(2008) 452-457.
|
[29] |
C. Jia, A. Migliore, N. Xin, et al., Science 352(2016) 1443-1445.
|
[30] |
N. Xin, J. Guan, C. Zhou, et al., Nat. Rev. Phys. 1(2019) 211-230.
|
[31] |
M. Kasha, Rev. Mod. Phys. 31(1959) 162-169.
|
[32] |
A.S. Davydov, Theory of Molecular Excitons, Plenum, New York, 1971.
|
[33] |
M. Kasha, Discuss. Faraday Soc. 9(1950) 14-19.
|
[34] |
M. Shimizu, T. Hiyama, Chem. -Asian J. 5(2010) 1516-1531.
|
[35] |
J. Gierschner, S.Y. Park, J. Mater. Chem. C 1(2013) 5818-5832.
|
[36] |
M.D. Curtis, J. Cao, J.W. Kampf, J. Am. Chem. Soc. 126(2004) 4318-4328.
|
[37] |
M. Shimizu, T. Hiyama, Chem. Asian J. 5(2010) 1516-1531.
|
[38] |
M. Baghgar, M.D. Barnes, ACS Nano 9(2015) 7105-7112.
|
[39] |
S. Basak, N. Nandi, A. Baral, A. Banerjee, Chem. Commun. 51(2015) 780-783.
|
[40] |
T. Eder, T. Stangl, M. Gmelch, et al., Nat. Commun. 8(2017) 1641.
|
[41] |
N.J. Hestand, F.C. Spano, Acc. Chem. Res. 50(2017) 341-350.
|
[42] |
S.R. Marques, J.A. Labastide, M.D. Barnes, J. Phys. Chem. C 122(2018) 15723-15728.
|
[43] |
N.J. Hestand, F.C. Spano, Chem. Rev. 118(2018) 7069-7163.
|
[44] |
A. Nangia, Acc. Chem. Res. 41(2008) 595-604.
|
[45] |
A.Y. Lee, D. Erdemir, A.S. Myerson, Annu. Rev. Chem. Biomol. Eng. 2(2011) 259-280.
|
[46] |
D.K. Bucar, R.W. Lancaster, J. Bernstein, Angew. Chem. Int. Ed. 54(2015) 69729-6993.
|
[47] |
A.J. Cruz-Cabeza, S.M. Reutzel-Edensb, J. Bernstein, Chem. Soc. Rev. 44(2015) 8619-8635.
|
[48] |
K.M. Steed, J.W. Steed, Chem. Rev. 115(2015) 2895-2933.
|
[49] |
Y.G. Zhen, H.L. Dong, L. Jiang, W.P. Hu, Chin. Chem. Lett. 27(2016) 1330-1338.
|
[50] |
H. Chung, Y. Diao, J. Mater. Chem. C 4(2016) 3915-3933.
|
[51] |
D. Yan, D.G. Evans, Mater. Horiz. 1(2014) 46-57.
|
[52] |
H. Jiang, C. Kloc, MRS Bull. 38(2013) 28-33.
|
[53] |
L. Chen, S.Y. Yin, M. Pan, et al., J. Mater. Chem. C 4(2016) 6962-6966.
|
[54] |
D. Yan, G. Fan, Y. Guan, et al., Phys. Chem. Chem. Phys.15(2013) 19845-19852.
|
[55] |
R. Li, S. Xiao, Y. Li, et al., Chem. Sci. 5(2014) 3922-3928.
|
[56] |
L. Wang, K. Wang, B. Zou, et al., Adv. Mater. 27(2015) 2918-2922.
|
[57] |
P. Chen, H. Zhang, L. Niu, et al., Adv. Funct. Mater. 27(2017) 1700332.
|
[58] |
Y. Zhang, Y.Q. Feng, X.X. Tian, et al., Adv. Opt. Mater. 6(2018) 1800903.
|
[59] |
G. Huang, Y. Jiang, S. Yang, B.S. Li, B.Z. Tang, Adv. Funct. Mater. 29(2019) 1900516.
|
[60] |
R.J. Davey, S.L.M. Schroeder, J.H. ter Horst, Angew. Chem. Int. Ed. 52(2013) 2166-2179.
|
[61] |
Z. Xu, Z. Zhang, X. Jin, Q. Liao, H. Fu, Chem. Asian J. 12(2017) 2985-2990.
|
[62] |
P.Y. Gu, G. Liu, J. Zhao, et al., J. Mater. Chem. C 5(2017) 8869-8874.
|
[63] |
B. Huang, W.C. Chen, Z. Li, et al., Angew. Chem. Int. Ed. 57(2018) 12473-12477.
|
[64] |
C. Zheng, Q. Zang, H. Nie, et al., Mater. Chem. Front. 2(2018) 180-188.
|
[65] |
T. Zhang, Z. Zhao, H. Ma, Y. Zhang, W.Z. Yuan, Chem. -Asian J. 14(2019) 884-889.
|
[66] |
Z. He, W. Li, G. Chen, Y. Zhang, W.Z. Yuan, Chin. Chem. Lett. 30(2019) 933-936.
|
[67] |
Z. Zhang, X. Song, S. Wang, et al., J. Phys. Chem. Lett. 7(2016) 1697-1702.
|
[68] |
Y. Zhang, H. Ma, S. Wang, et al., J. Phys. Chem. C 120(2016) 19759-19767.
|
[69] |
C. Wang, B. Xu, M. Li, et al., Mater. Horiz. 3(2016) 220-225.
|
[70] |
D. Tian, Z. Zhu, L. Xu, H. Cong, J. Zhu, Mater. Horiz. 6(2019) 1215-1221.
|
[71] |
G. Giri, E. Verploegen, S.C.B. Mannsfeld, et al., Nature 480(2011) 504-508.
|
[72] |
O. Guillon, J. Gonzalez-Julian, B. Dargatz, et al., Adv. Eng. Mater. 16(2014) 830-849.
|
[73] |
E. Timurdogan, C.V. Poulton, M.J. Byrd, M.R. Watts, Nat. Photonics 11(2017) 200-206.
|
[74] |
M.Z. Becker, N. Shomrat, Y. Tsur, Adv. Mater. 30(2018) 1706369.
|
[75] |
O. Guillon, C. Elsässer, O. Gutfleisch, et al., Mater. Today 21(2018) 527-536.
|
[76] |
B. Hu, L. Yan, M. Shao, Adv. Mater. 21(2009) 1500-1516.
|
[77] |
M.B.J. Atkinson, D.K. Bwambok, J. Chen, et al., Angew. Chem. Int. Ed. 52(2013) 10208-10211.
|
[78] |
J. Potticary, L.R. Terry, C. Bell, et al., Nat. Commun. 7(2016) 11555.
|
[79] |
R.A. Laudise, C. Kloc, P.G. Simpkins, T. Siegrist, J. Cryst. Growth 187(1998) 449-454.
|
[80] |
S.M. Yoon, I.C. Hwang, N. Shin, et al., Langmuir 23(2007) 11875-11882.
|
[81] |
S. Min Yoon, H.J. Song, H.C. Choi, Adv. Mater. 22(2010) 2164-2167.
|
[82] |
A.O.F. Jones, B. Chattopadhyay, Y.H. Geerts, R. Resel, Adv. Funct. Mater. 26(2016) 2233-2255.
|
[83] |
M.A. Reyes-Martinez, A.J. Crosby, A.L. Briseno, Nat. Commun. 6(2015) 6948.
|
[84] |
S.Y. Min, T.S. Kim, Y. Lee, et al., Small 11(2015) 45-62.
|
[85] |
X. Zhang, J. Jie, W. Deng, et al., Adv. Mater. 28(2016) 2475-2503.
|
[86] |
L. Yu, Acc. Chem. Res. 43(2010) 1257-1266.
|
[87] |
Y. Wu, J. Feng, X. Jiang, et al., Nat. Commun. 6(2015) 6737.
|
[88] |
T. Liu, K. Cheng, E. Salami-Ranjbaran, et al., J. Chem. Phys.143(2015) 084506.
|
[89] |
J. Gómez, J. Jiang, A. Gujral, et al., Soft Matter 12(2016) 2942-2947.
|
[90] |
S.S. Dalala, D.M. Waltersa, I. Lyubimovb, J.J. de Pablob, M.D. Ediger, Proc. Natl. Acad. Sci. U. S. A. 112(2015) 4227-4232.
|
[91] |
C. Park, J.E. Park, H.C. Choi, Acc. Chem. Res. 47(2014) 2353-2364.
|
[92] |
Y. Xu, Z. Xie, H. Zhang, F. Shen, Y. Ma, CrystEngComm 18(2016) 6824-6829.
|
[93] |
J. Hoja, A.M. Reilly, A. Tkatchenko, Wiley Interdiscip. Rev. Comput. Mol. Sci. 7(2017) e1294.
|
[94] |
F. Gu, C. Zhang, X. Ma, Macromol. Rapid Commun. 40(2019)1800751.
|
[95] |
S. Varughese, J. Mater. Chem. C 2(2014) 3499-3516.
|
[96] |
D. Braga, F. Grepioni, Chem. Commun. 29(2005) 3635-3645.
|
[97] |
J. Nyman, G.M. Day, Phys. Chem. Chem. Phys. 18(2016) 31132-31143.
|
[98] |
J.G. Brandenburg, J. Potticary, H.A. Sparkes, S.L. Price, S.R. Hall, J. Phys. Chem. Lett. 8(2017) 4319-4324.
|
[99] |
L. Zhang, Z. Liu, L.Y. Liu, et al., ACS Appl. Mater. Interfaces 10(2018) 44092-44101.
|
[100] |
M. Dharmarwardana, R.P. Welch, S. Kwon, et al., Chem. Commun. 53(2017) 9890-9893.
|
[101] |
C. Ge, J. Liu, X. Ye, et al., J. Phys. Chem. C 122(2018) 15744-15752.
|
[102] |
M. Louis, A. Brosseau, R. Guillot, et al., J. Phys. Chem. C 121(2017) 15897-15907.
|
[103] |
Y.Beldjoudi,A.Arauzo,J.Campo,etal.,J.Am.Chem.Soc.141(2019)6875-6889.
|
[104] |
L.Maini,F.Gallino,M.Zambianchi,etal.,Chem.Commun.51(2015)2033-2035.
|
[105] |
M. Li, Q. Zhang, J. Wang, X. Mei, Chem. Commun. 52(2016) 11288-11291.
|
[106] |
T. Yamakado, K. Otsubo, A. Osuka, S. Saito, J. Am. Chem. Soc.140(2018) 6245-6248.
|
[107] |
B. Xu, J. He, Y. Mu, et al., Chem. Sci. 6(2015) 3236-3241.
|
[108] |
P.S. Hariharan, D. Moon, S.P. Anthony, J. Mater. Chem. C 3(2015) 8381-8388.
|
[109] |
Z. Zhuang, P. Shen, S. Ding, et al., Chem. Commun. 52(2016) 10842-10845.
|
[110] |
Y. Lei, Y. Zhou, L. Qian, et al., J. Mater. Chem. C 5(2017) 5183-5192.
|
[111] |
Y. Zhang, Q. Song, K. Wang, et al., J. Mater. Chem. C 3(2015) 3049-3054.
|
[112] |
C. Wang, Z. Li, Mater. Chem. Front. 1(2017) 2174-2194.
|
[113] |
Y. Yang, X. Yang, X. Fang, K.Z. Wang, D. Yan, Adv. Sci. 5(2018) 1801187.
|
[114] |
W. Zhang, A.R. Oganov, A.F. Goncharov, et al., Science 342(2013) 1502-1505.
|
[115] |
L. Zhang, Y. Wang, J. Lv, Y. Ma, Nat. Rev. Mater. 2(2017) 17005.
|
[116] |
S.J. Yoon, S.Y. Park, J. Mater. Chem. 21(2011) 8338-8346.
|
[117] |
B. Lu, Y. Zhang, X. Yang, et al., J. Mater. Chem. C 6(2018) 9660-9666.
|
[118] |
M. Martínez-Abadía, R. Giménez, M.B. Ros, Adv. Mater. 30(2018) 1704161.
|
[119] |
Y. Xu, K. Wang, Y. Zhang, et al., J. Mater. Chem. C 4(2016) 1257-1262.
|
[120] |
J. Guan, C. Zhang, D. Gao, et al., Mater. Chem. Front. 3(2019) 1510-1517.
|
[121] |
W. Guan, W. Zhou, J. Lu, C. Lu, Chem. Soc. Rev. 44(2015) 6981-7009.
|
[122] |
L. Bian, H. Shi, X. Wang, et al., J. Am. Chem. Soc. 140(2018) 10734-10739.
|
[123] |
W. Zhang, D. Yu, Z. Wang, et al., Org. Lett. 21(2019) 109-113.
|
[124] |
D. Yan, Chem. -Eur. J. 21(2015) 4880-4896.
|
[125] |
D. Wu, A.C. Sedgwick, T. Gunnlaugsson, et al., Chem. Soc. Rev. 46(2017) 7105-7123.
|
[126] |
R. Gao, X. Fang, D. Yan, J. Mater. Chem. C 7(2019) 3399-3412.
|
[127] |
L. Wang, K. Wang, H. Zhang, et al., Chem. Commun. 51(2015) 7701-7704.
|
[128] |
B. Shao, R. Jin, A. Li, et al., J. Mater. Chem. C 7(2019) 3263-3268.
|
[129] |
X. Wang, Q. Liao, H. Li, et al., J. Am. Chem. Soc. 137(2015) 9289-9295.
|
[130] |
J. Gierschner, S. Varghese, S.Y. Park, Adv. Opt. Mater. 4(2016) 348-364.
|
[131] |
P. Baronas, G. Kreiza, P. Adomenas, et al., ACS Appl. Mater. Interfaces 10(2018) 2768-2775.
|
[132] |
H.H. Fang, J. Yang, J. Feng, et al., Laser Photonics Rev. 8(2014) 687-715.
|
[133] |
W. Zhang, Y.S. Zhao, Chem. Commun. 52(2016) 8906-8917.
|
[134] |
C. Zhang, H. Dong, Y.S. Zhao, Adv. Opt. Mater. 6(2018) 1701193.
|
[135] |
H. Dong, C. Zhang, J. Yao, Y.S. Zhao, Chem. -Asian J. 11(2016) 2656-2661.
|
[136] |
Q. Liao, Z. Wang, Q. Gao, et al., J. Mater. Chem. C 6(2018) 7994-8002.
|
[137] |
K. Wang, H. Zhang, S. Chen, et al., Adv. Mater. 26(2014) 6168-6173.
|
[138] |
S. Varghese, S.K. Park, S. Casado, et al., Adv. Funct. Mater. 26(2016) 2349-2356.
|
[139] |
Q. Liao, X.G. Wang, S. Lv, et al., ACS Nano 12(2018) 5359-5367.
|
[140] |
B. Fang, M. Chu, Z. Wu, et al., J. Mater. Chem. C 7(2019) 4434-4440.
|
[141] |
A.J. Bard, Electrogenerated Chemiluminescence, Marcel Dekker, New York, 2004.
|
[142] |
S. Carrara, F. Arcudi, M. Prato, L. De Cola, Angew. Chem. Int. Ed. 56(2017) 4757-4761.
|
[143] |
Y. Chen, S. Zhou, L. Li, J. Zhu, Nano Today 12(2017) 98-115.
|
[144] |
R. Tian, S. Zhang, M. Li, et al., Adv. Funct. Mater. 25(2015) 5006-5015.
|
[145] |
Z. Liu, W. Qi, G. Xu, Chem. Soc. Rev. 44(2015) 3117-3142.
|
[146] |
G. Fan, D. Yan, Adv. Opt. Mater. 4(2016) 2139-2147.
|
[147] |
Z. Li, Y. Zhou, L. Peng, D. Yan, M. Wei, Chem. Commun. 53(2017) 8862-8865.
|
[148] |
J. Zhang, S. Arbault, N. Sojic, D. Jiang, Annu. Rec. Anal. Chem. 12(2019) 275-295.
|
[149] |
J. Gu, Y. Gao, J. Wu, et al., ACS Appl. Mater. Interfaces 9(2017) 8891-8899.
|
[150] |
S. Hotta, T. Yamao, S.Z. Bisri, T. Takenobuc, Y. Iwasa, J. Mater. Chem. C 2(2014) 965-980.
|
[151] |
Z.A. Lamport, H.F. Haneef, S. Anand, M. Waldrip, O.D. Jurchescu, J. Appl. Phys. 124(2018) 071101.
|
[152] |
C. Wang, H. Dong, L. Jiang, W. Hu, Chem. Soc. Rev. 47(2018) 422-500.
|
[153] |
Y. Wang, L. Sun, C. Wang, et al., Chem. Soc. Rev. 48(2019) 1492-1530.
|
[154] |
C.T. Hsieh, C.Y. Chen, H.Y. Lin, et al., J. Phys. Chem. C 122(2018) 16242-16248.
|
[155] |
D. Liu, C. Li, S. Niu, et al., J. Mater. Chem. C 7(2019) 5925-5930.
|
[156] |
F. Liang, L. Kang, Z. Lin, Y. Wu, C. Chen, Coord. Chem. Rev. 333(2017) 57-70.
|
[157] |
J. Lu, J.N. Yue, L. Xiong, et al., J. Am. Chem. Soc. 141(2019) 8093-8097.
|
[158] |
R. Tang, S. Zhou, Z. Cheng, et al., Chem. Sci. 8(2017) 340-347.
|
[159] |
P. Chen, H. Zhang, M. Han, et al., Mater. Chem. Front. 2(2018) 1374-1382.
|
[160] |
R. Medishetty, J.K. Zar?ba, D. Mayer, M. Samo c, R.A. Fischer, Chem. Soc. Rev. 46(2017) 4976-5004.
|
[161] |
R. Medishetty, V. Nalla, L. Nemec, et al., Adv. Mater. 29(2017) 1605637.
|
[162] |
X. Yang, X. Lin, Y.S. Zhao, D. Yan, Chem. Eur. J. 24(2018) 6484-6493.
|
[163] |
M. Li, Y. Li, H. Zhang, et al., J. Mater. Chem. C 5(2017) 4111-4122.
|
[164] |
J. Xu, S. Semin, J. Cremers, et al., Adv. Opt. Mater. 3(2015) 948-956.
|
[165] |
C. Ju, X. Li, G. Yang, et al., Dyes Pigm. 166(2019) 272-282.
|
[166] |
R. Hilfiker, Polymorphism:in the Pharmaceutical Industry, Wiley-VCH, Weinheim, 2006.
|
[167] |
J. Bernstein, Cryst. Growth Des. 11(2011) 632-650.
|
[168] |
A. Llinas, J.M. Goodman, Drug Discov. Today 13(2008) 198-210.
|
[169] |
D. Braga, F. Grepioni, L. Maini, Chem. Commun. 46(2010) 6232-6242.
|
[170] |
X. Ye, Y. Liu, Y. Lv, et al., Angew. Chem. Int. Ed. 54(2015) 7976-7980.
|
[171] |
F. Ito, Y. Suzuki, J. Fujimori, et al., Sci. Rep. 6(2016) 22918.
|
[172] |
Z. Gao, S. Rohani, J. Gong, J. Wang, Engineering 3(2017) 343-353.
|
[173] |
K. Rautaniemi, E. Vuorimaa-Laukkanen, C.J. Strachan, T. Laaksonen, Mol. Pharm. 15(2018) 1964-1971.
|
|
|
|