|
|
Recent advances in the development of polydiacetylene-based biosensors |
Zhijie Zhang, Fang Wang, Xiaoqiang Chen |
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University, Nanjing 210009, China |
|
|
Guide The review summarizes efforts made in the development of polydiacetylene based biosensors for assaying enzyme activities, targeting tumors, imaging cells, monitoring cellular activities, and detecting microorganisms and biomolecules. |
|
Abstract Biosensors that effectively and selectively detect biomolecules and monitor biological processes have become an important component of biological and medical studies. Because they possess several attractive features, polydiacetylenes (PDAs) have been employed as frameworks for fluorometric and colorimetric sensors. PDAs are formed in their non-fluorescent blue-colored state by UV light induced polymerization of head group functionalized diacetylene monomers (DAs) and they undergo a transition to form fluorescent red-colored PDAs in response to a variety of stimuli. Importantly, by properly choosing a headgroup in the DA, the formed PDA can be designed to undergo a fluorescence/colorimetric change in response to a specific biological stimulus. This review summarizes recent advances that have been made in the development of PDA biosensors with an emphasis being given to design strategies and applications.
|
Received: 25 June 2019
|
Fund: This study was financially supported by the National Key Research and Development Program of China (No. 2018YFA0902200), the National Natural Science Foundation of China (Nos. 21722605, 21978131 and 21878156), the Six Talent Peaks Project in Jiangsu Province (No. XCL-034) and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). |
Corresponding Authors:
Fang Wang, Xiaoqiang Chen
E-mail: wf620@126.com;chenxq@njtech.edu.cn,chenxq@njut.edu.cn
|
|
|
|
[1] |
D.E. Wang, L. Zhao, M.S. Yuan, et al., ACS Appl. Mater. Interfaces 8(2016) 28231-28240.
|
[2] |
C.F. Chen, J. Chen, T.Y. Wang, M.H. Liu, ACS Appl. Mater. Interfaces 8(2016) 30608-30615.
|
[3] |
X.Q. Chen, J. Lee, M.J. Jou, J.M. Kim, J. Yoon, Chem. Commun. (2009) 3434-3436.
|
[4] |
L.J. Tang, M.Y. Tian, H.B. Chen, et al., Dyes Pigments 158(2018) 482-489.
|
[5] |
L.J. Tang, D. Xu, M.Y. Tian, X.M. Yan, J. Lumin. 208(2019) 502-508.
|
[6] |
Y.H. Chen, T.W. Wei, Z.Z. Zhang, et al., Chin. Chem. Lett. 28(2017) 1957-1960.
|
[7] |
Y. Li, L.H. Wang, X. Yin, et al., J. Mater. Chem. A 2(2014) 18304-18312.
|
[8] |
P. Narkwiboonwong, G. Tumcharern, A. Potisatityuenyong, S. Wacharasindhu, M. Sukwattanasinitt, Talanta 83(2011) 872-878.
|
[9] |
J. Lee, H. Jun, J. Kim, Adv. Mater. 21(2009) 3674-3677.
|
[10] |
V.K. Rao, N.L. Teradal, R. Jelinek, ACS Appl. Mater. Interfaces 11(2019) 4470-4479.
|
[11] |
X.N. Wang, X.L. Sun, P.A. Hu, et al., Adv. Funct. Mater. 23(2013) 6044-6050.
|
[12] |
B.W. Davis, A.J. Burris, N. Niamnont, et al., Langmuir 30(2014) 9616-9622.
|
[13] |
X.Q. Chen, S. Kang, M.J. Kim, et al., Angew. Chem. Int. Ed. 49(2010) 1422-1425.
|
[14] |
Y.Y. Zhang, J. Northcutt, T. Hanks, et al., Food Chem. 221(2017) 515-520.
|
[15] |
P. Boullanger, D. Lafont, M.N. Bouchu, et al., C. R. Chim. 11(2008) 43-60.
|
[16] |
C.X. Guo, P. Boullanger, T. Liu, L. Jiang, J. Phys. Chem. B 109(2005) 18765-18771.
|
[17] |
Q.L. Nie, Y. Zhang, J. Zhang, M.Q. Zhang, J. Mater. Chem. 16(2006) 546-549.
|
[18] |
J. Lee, H.J. Kim, J. Kim, J. Am. Chem. Soc. 130(2008) 5010-5011.
|
[19] |
X.M. Sun, T. Chen, S.Q. Huang, L. Li, H.S. Peng, Chem. Soc. Rev. 39(2010) 4244-4257.
|
[20] |
S. Wacharasindhu, S. Montha, J. Boonyiseng, et al., Macromolecules 43(2010) 716-724.
|
[21] |
X.Q. Chen, J. Yoon, Dyes Pigments 89(2011) 194-198.
|
[22] |
I.S. Park, H.J. Park, J.M. Kim, ACS Appl. Mater. Interfaces 5(2013) 8805-8812.
|
[23] |
S.J. Kew, E.A.H. Hall, Anal. Chem. 78(2006) 2231-2238.
|
[24] |
D.J. Ahn, E.H. Chae, G.S. Lee, et al., J. Am. Chem. Soc. 125(2003) 8976-8977.
|
[25] |
S. Seo, D. Kim, G. Jang, et al., React. Funct. Polym. 73(2013) 451-456.
|
[26] |
S. Chae, J.P. Lee, J.M. Kim, Adv. Funct. Mater. 26(2016) 1769-1776.
|
[27] |
W. Zhang, H.B. Xu, Y. Chen, S. Cheng, L.J. Fan, ACS Appl. Mater. Interfaces 5(2013) 4603-4606.
|
[28] |
M. Ulaganathan, R.V. Hansen, N. Drayton, et al., ACS Appl. Mater. Interfaces 8(2016) 32643-32648.
|
[29] |
J. Lee, O. Yarimaga, C.H. Lee, Y.K. Choi, J.M. Kim, Adv. Funct. Mater. 21(2011) 1032-1039.
|
[30] |
B. Yoon, D.Y. Ham, O. Yarimaga, et al., Adv. Mater. 23(2011) 5492-5497.
|
[31] |
J. Yoon, Y.S. Jung, J.M. Kim, Adv. Funct. Mater. 19(2009) 209-214.
|
[32] |
D.H. Park, W. Jeong, M. Seo, B.J. Park, J.M. Kim, Adv. Funct. Mater. 26(2016) 498-506.
|
[33] |
J. Lee, M. Pyo, S.H. Lee, et al., Nat. Commun. 5(2014) 3736.
|
[34] |
J. Lee, H.T. Chang, H. An, et al., Nat. Commun. 4(2013) 2461.
|
[35] |
D.H. Charych, J.O. Nagy, W. Spevak, M.D. Bednarski, Science 261(1993) 585-588.
|
[36] |
K.D. Green, M.Y. Fosso, S. Garneau-Tsodikova, Molecules 23(2018) 3252.
|
[37] |
D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, J. Am. Chem. Soc.134(2012) 10244-10250.
|
[38] |
P. Anand, B. Singh, Arch. Pharm. Res. 36(2013) 375-399.
|
[39] |
S. Peng, Y.C. Pan, Y.L. Wang, et al., Adv. Sci. 4(2017) 1700310.
|
[40] |
G.D. Zhou, F. Wang, H.L. Wang, et al., ACS Appl. Mater. Interfaces 5(2013) 3275-3280.
|
[41] |
F. Speranza, M. Mahankali, K.M. Henkels, J. Gomez-Cambronero, J. Biol. Chem. 289(2014) 28885-28897.
|
[42] |
C. Spencer, H.A. Brown, Biochemistry 54(2015) 1208-1218.
|
[43] |
Z.Z. Zhang, J. Li, F. Wang, et al., Sens. Actuators B:Chem. 282(2019) 636-643.
|
[44] |
M. Du, T. Yang, Y.C. Zhang, K. Jiao, Electroanalysis 21(2009) 2521-2526.
|
[45] |
S.H. Jung, H. Jang, M.C. Lim, et al., Anal. Chem. 87(2015) 2072-2078.
|
[46] |
S.K. Golombek, J.N. May, B. Theek, et al., Adv. Drug Deliv. Rev.130(2018) 17-38.
|
[47] |
P. Kesharwani, A.K. Iyer, Drug Discov. Today 20(2015) 536-547.
|
[48] |
M. Gao, F.B. Yu, C.J. Lv, J. Choo, L.X. Chen, Chem. Soc. Rev. 46(2017) 2237-2271.
|
[49] |
W.T. Yang, W.S. Guo, W.J. Le, et al., ACS Nano 10(2016) 10245-10257.
|
[50] |
Y.A. Zhong, F.H. Meng, C. Deng, Z.Y. Zhong, Biomacromolecules 15(2014) 1955-1969.
|
[51] |
X.G. Wang, Z.Y. Dong, H. Cheng, et al., Nanoscale 7(2015) 16061-16070.
|
[52] |
D.H. Yao,S. Li, X.M. Zhu, J.C. Wu, H. Tian, Chem. Commun. 53(2017) 1233-1236.
|
[53] |
I. Theodorou, P. Anilkumar, B. Lelandais, et al., Chem. Commun. 51(2015) 14937-14940.
|
[54] |
L.L. Li, X.Q. An, X.J. Yan, Colloids Surf. B 134(2015) 235-239.
|
[55] |
J.H. Fang, T.L. Chiu, W.C. Huang, et al., Adv. Healthc. Mater. 5(2016) 688-695.
|
[56] |
D.L. Yang, R.F. Zou, Y. Zhu, et al., Nanoscale 6(2014) 14772-14783.
|
[57] |
D. Wang, H.F. Su, R.T.K. Kwok, et al., Chem. Sci. 9(2018) 3685-3693.
|
[58] |
H. Jiang, X.Y. Hu, S. Schlesiger, et al., Angew. Chem. Int. Ed. 56(2017) 14526-14530.
|
[59] |
P.J. Wu, S.Y. Kuo, Y.C. Huang, C.P. Chen, Y.H. Chan, Anal. Chem. 86(2014) 4831-4839.
|
[60] |
B.E.I. Ramakers, S.A. Bode, A.R. Killaars, J.C.M. van Hest, D.W.P.M. Löwik, J. Mater. Chem. B 3(2015) 2954-2961.
|
[61] |
P.F. Xu, R.B. Zhang, N. Yang, et al., Biomicrofluidics 13(2019) 024110-024118.
|
[62] |
N.T. Thet, W.D. Jamieson, M. Laabei, J.D. Mercer-Chalmers, A.T.A. Jenkins, J. Phys. Chem. B 118(2014) 5418-5427.
|
[63] |
S. Lee, H. Cheng, M. Chi, et al., Biosens. Bioelectron. 77(2016) 1016-1019.
|
[64] |
J. Park, S.K. Ku, D. Seo, et al., Chem. Commun. 52(2016) 10346-10349.
|
[65] |
J. Zhou, D.Y. Yao, Z.Y. Qian, et al., Biomaterials 161(2018) 11-23.
|
[66] |
J. Roh, S.Y. Lee, S. Park, D.J. Ahn, Chem.-Asian J. 12(2017) 2033-2037.
|
[67] |
T. Berninger, C. Bliem, E. Piccinini, O. Azzaroni, W. Knoll, Biosens. Bioelectron. 115(2018) 104-110.
|
[68] |
W.J. Lu, Y.F. Gao, Y. Jiao, et al., Nanoscale 9(2017) 11545-11552.
|
[69] |
M.M. Yu, W.W. Du, H.X. Li, H.Y. Zhang, Z.X. Li, Biosens. Bioelectron. 92(2017) 385-389.
|
[70] |
T. Liu, N. Li, J.X. Dong, et al., Biosens. Bioelectron. 87(2017) 772-778.
|
[71] |
T. Yu, C.N. Xu, J. Qiao, R.Y. Zhang, L. Qi, Chin. Chem. Lett. 30(2019) 660-663.
|
[72] |
Y.L. Zhou, Z.C. Yang, M.T. Xu, Anal. Methods 4(2012) 2711.
|
[73] |
A. Arendowski, T. Ruman, Anal. Methods 10(2018) 5398-5405.
|
[74] |
E. Cho, H. Kim, Y. Choi, S.R. Paik, S. Jung, Sci. Rep. 6(2016) 31115.
|
[75] |
Z.Z. Zhang, T.W. Wei, Y.H. Chen, et al., Sens. Actuators B:Chem. 255(2018) 2211-2217.
|
[76] |
X.X. Xiang, Y. Li, L. Ling, et al., Sens. Actuators B:Chem. 290(2019) 68-72.
|
[77] |
C.P. Chen, W.F. Liu, S.P. Tian, T.T. Hong, Sensors 19(2019) 1712.
|
[78] |
U.D. Kamaci, M. Kamaci, A. Peksel, Spectrochim. Acta A 212(2019) 232-239.
|
[79] |
Y.K. Jung, H.G. Park, Biosens. Bioelectron. 72(2015) 127-132.
|
[80] |
K. Heo, K.A. Park, Y.H. Kim, et al., BMB Rep. 42(2009) 685-690.
|
[81] |
D.H. Kang, H.S. Jung, K. Kim, J. Kim, ACS Appl. Mater. Interfaces 9(2017) 42210-42216.
|
[82] |
M.D. Yao, X.F. Lv, Y.L. Deng, M. Rasheed, Anal. Chim. Acta 1055(2019) 115-125.
|
[83] |
Z.Z. Yang, Z.B. Wen, X. Peng, et al., Chem. Commun. 55(2019) 6453-6456.
|
[84] |
X.M. Miao, W.H. Wang, T.S. Kang, et al., Biosens. Bioelectron. 86(2016) 454-458.
|
[85] |
Y. Zhu, D. Qiu, G. Yang, et al., Biosens. Bioelectron. 85(2016) 198-204.
|
[86] |
S.M. Xu, S.T. Che, P.Y. Ma, et al., Talanta 197(2019) 548-552.
|
[87] |
S. Li, J.L. Liu, Y.L. Lu, et al., Biosens. Bioelectron. 117(2018) 32-39.
|
[88] |
S. Sankoh, C. Thammakhet, A. Numnuam, et al., Biosens. Bioelectron. 85(2016) 743-750.
|
[89] |
L. Frullano, J. Rohovec, S. Aime, et al., Chemistry 10(2004) 5205-5217.
|
[90] |
D.E. Wang, J.H. Yan, J.J. Jiang, et al., Nanoscale 10(2018) 4570-4578.
|
|
|
|