|
|
Small molecule fluorescent probes of protein vicinal dithiols |
Guodong Hua, Huiyi Jiaa, Lanning Zhaoa, Dong-Hyung Chob, Jianguo Fanga |
a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
b School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea |
|
|
Guide Small molecule fluorescent probes that recognize and label protein vicinal dithiols have been summarized according to their different acceptor sites. This review will provide the purposeful design strategy of novel probes for detecting vicinal dithiols. |
|
Abstract The vicinal dithiol motif is widely present in proteins, and is critical for proteins' structures and functions. In recent years, a variety of fluorescent probes with high specificity and outstanding optical properties for sensing protein vicinal dithiols have been developed. In this review, we summarized the fluorescent probes of protein vicinal dithiols in literature. These probes are classified into four types based on their acceptor sites, i.e., biarsenical probes, monoarsenical probes, dimaleimide probes and diacrylate probes. Through analyzing the properties of different probes, we expect that this review would help readers further understand the structural factors of these probes and provide the design strategy for novel fluorescent probes with improved properties.
|
Received: 23 April 2019
|
Fund: The financial supports from the National Natural Science Foundation of China (Nos. 21572093 & 21778028) and the 111 Project are greatly acknowledged. |
Corresponding Authors:
Jianguo Fang
E-mail: fangjg@lzu.edu.cn
|
|
|
|
[1] |
N. Lau, M.D. Pluth, Curr. Opin. Chem. Biol. 49(2019) 1-8.
|
[2] |
C.E. Paulsen, K.S. Carroll, Chem. Rev. 113(2013) 4633-4679.
|
[3] |
M.P. Gamcsik, M.S. Kasibhatla, S.D. Teeter, O.M. Colvin, Biomarkers 17(2012) 671-691.
|
[4] |
Y. Ozkan, E. Ozkan, B. Simsek, Int. J. Cardiol. 82(2002) 269-277.
|
[5] |
I.C. West, Diabetic Med. 17(2000) 171-180.
|
[6] |
B.D. Paul, J.I. Sbodio, S.H. Snyder, Trends Pharmacol. Sci. 39(2018) 513-524.
|
[7] |
R.E. Hansen, D. Roth, J.R. Winther, Proc. Natl. Acad. Sci. U. S. A.106(2009) 422-427.
|
[8] |
J.D. Short, K. Downs, S. Tavakoli, R. Asmis, Antioxid. Redox Signal. 25(2016) 816-835.
|
[9] |
T.K. Lin, G. Hughes, A. Muratovska, et al., J. Biol. Chem. 277(2002) 17048-17056.
|
[10] |
K.M. Cook, P.J. Hogg, Antioxid. Redox Signal. 18(2013) 1987-2015.
|
[11] |
C.R. Borges, D.F. Lake, Antioxid. Redox Signal. 21(2014) 392-395.
|
[12] |
X.W. Zhang, X.J. Yan, Z.R. Zhou, et al., Science 328(2010) 240-243.
|
[13] |
N. Houstis, E.D. Rosen, E.S. Lander, Nature 440(2006) 944-948.
|
[14] |
J. Sugatani, M.E. Steinhelper, K. Saito, et al., J. Biol. Chem. 262(1987) 16995-17001.
|
[15] |
C. Gitler, M. Mogyoros, E. Kalef, Methods Enzymol. 233(1994) 403-415.
|
[16] |
A. Nott, P.M. Watson, J.D. Robinson, et al., Nature 455(2008) 411-415.
|
[17] |
R. Requejo, E.T. Chouchani, A.M. James, et al., Arch. Biochem. Biophys. 504(2010) 228-235.
|
[18] |
O. Rudyk, P. Eaton, Redox Biol. 2(2014) 803-813.
|
[19] |
R.D. Hoffman, M.D. Lane, J. Biol. Chem. 267(1992) 14005-14011.
|
[20] |
R. Moaddel, A. Sharma, T. Huseni, et al., Bioconjugate Chem. 10(1999) 629-637.
|
[21] |
J.W. Lichtman, J.A. Conchello, Nat. Methods 2(2005) 910-919.
|
[22] |
J.A. Cotruvo, A.T. Aron, et al., Chem. Soc. Rev. 44(2015) 4400-4414.
|
[23] |
X. Li, X. Gao, W. Shi, H. Ma, Chem. Rev. 114(2014) 590-659.
|
[24] |
B. Li, Z. He, H. Zhou, et al., Chin. Chem. Lett. 28(2017) 1929-1934.
|
[25] |
L. Yu, Y. Qiao, L. Miao, et al., Chin. Chem. Lett. 29(2018) 1545-1559.
|
[26] |
M. Ünlü, M.E. Morgan, J.S. Minden, Electrophoresis 18(1997) 2071-2077.
|
[27] |
D.W. Cleveland, S.G. Fischer, M.W. Kirschner, U.K. Laemmli, J. Biol. Chem. 252(1977) 1102-1106.
|
[28] |
H. Frauenfelder, G.A. Petsko, D. Tsernoglou, Nature 280(1979) 558-563.
|
[29] |
G.A. Petsko, D. Ringe, Annu. Rev. Biophys. Bioeng. 13(1984) 331-371.
|
[30] |
A.D. MacKerell, D. Bashford, M. Bellott, et al., J. Phys. Chem. B 102(1998) 3586-3616.
|
[31] |
A. Neumaier, SIAM Rev 39(1997) 407-460.
|
[32] |
D.S. Wishart, B.D. Sykes, F.M. Richards, J. Mol. Biol. 222(1991) 311-333.
|
[33] |
K.M. Dean, A.E. Palmer, Nat. Chem. Biol. 10(2014) 512-523.
|
[34] |
B.A. Griffin, S.R. Adams, R.Y. Tsien, Science 281(1998) 269-272.
|
[35] |
H. Cao, B. Chen, T.C. Squier, M.U. Mayer, Chem. Commun. (2006) 2601-2603.
|
[36] |
C.C. Spagnuolo, R.J. Vermeij, E.A. Jares-Erijman, J. Am. Chem. Soc. 128(2006) 12040-12041.
|
[37] |
A. Pomorski, J. Otlewski, A. Krezel, Chembiochem 11(2010) 1214-1218.
|
[38] |
J. Nakanishi, T. Nakajima, M. Sato, et al., Anal. Chem. 73(2001) 2920-2928.
|
[39] |
S.R. Adams, R.E. Campbell, L.A. Gross, et al., J. Am. Chem. Soc. 124(2002) 6063-6076.
|
[40] |
A.K. Bhunia, S.C. Miller, Chembiochem 8(2007) 1642-1645.
|
[41] |
L.Q. Ying, B.P. Branchaud, Bioconjugate Chem. 22(2011) 987-992.
|
[42] |
K.S. Thorn, N. Naber, M. Matuska, et al., Protein Sci. 9(2000) 213-217.
|
[43] |
M. Uljana Mayer, L. Shi, T.C. Squier, Mol. BioSyst. 1(2005) 53-56.
|
[44] |
J. Schulte-Zweckel, F. Rosi, D. Sreenu, et al., Chem. Commun. 50(2014) 12761-12764.
|
[45] |
Y. Taguchi, Z.D. Shi, B. Ruddy, et al., Mol. Biol. Cell 20(2009) 233-244.
|
[46] |
J. Nakanishi, M. Maeda, Y. Umezawa, Anal. Sci. 20(2004) 273-278.
|
[47] |
D.M. Spencer, T.J. Wandless, S.L. Schreiber, G.R. Crabtree, Science 262(1993) 1019-1024.
|
[48] |
E.J. Licitra, J.O. Liu, Proc. Natl. Acad. Sci. U. S. A. 93(1996) 12817-12821.
|
[49] |
B. Liu, C.T. Archer, L. Burdine, et al., J. Am. Chem. Soc. 129(2007) 12348-12349.
|
[50] |
A. Rutkowska, C.H. Haering, C. Schultz, Angew. Chem. Int. Ed. 50(2011) 12655-12658.
|
[51] |
P. Yan, T. Wang, G.J. Newton, et al., Chembiochem 10(2009) 1507-1518.
|
[52] |
S.S. Syeda, D. Rice, D.J. Hook, et al., Arch. Pharm. 349(2016) 233-241.
|
[53] |
G.J. Augustine, F. Santamaria, K. Tanaka, Neuron 40(2003) 331-346.
|
[54] |
H. Parnas, L. Segel, J. Dudel, I. Parnas, Trends Neurosci. 23(2000) 60-68.
|
[55] |
O. Tour, S.R. Adams, R.A. Kerr, et al., Nat. Chem. Biol. 3(2007) 423-431.
|
[56] |
N. Grimsley, T. Hohn, J.W. Davies, B. Hohn, Nature 325(1987) 177-179.
|
[57] |
T. Fujii, Y. Shindo, K. Hotta, et al., J. Am. Chem. Soc. 136(2014) 2374-2381.
|
[58] |
N. Kotera, E. Dubost, G. Milanole, et al., Chem. Commun. 51(2015) 11482-11484.
|
[59] |
M.M. Spence, S.M. Rubin, I.E. Dimitrov, et al., Proc. Natl. Acad. Sci. U. S. A. 98(2001) 10654-10657.
|
[60] |
X. Michalet, F. Pinaud, L. Bentolila, et al., Science 307(2005) 538-544.
|
[61] |
E. Genin, O. Carion, B. Mahler, et al., J. Am. Chem. Soc. 130(2008) 8596-8597.
|
[62] |
H. Cao, Y. Xiong, T. Wang, et al., J. Am. Chem. Soc. 129(2007) 8672-8673.
|
[63] |
N. Fu, Y. Xiong, T.C. Squier, Bioconjugate Chem. 24(2013) 251-259.
|
[64] |
G.H. Patterson, J. Lippincott-Schwartz, Science 297(2002) 1873-1877.
|
[65] |
B. Huang, W. Wang, M. Bates, X. Zhuang, Science 319(2008) 810-813.
|
[66] |
R.M. Dickson, A.B. Cubitt, R.Y. Tsien, et al., Nature 388(1997) 355-358.
|
[67] |
N. Fu, Y. Xiong, T.C. Squier, J. Am. Chem. Soc. 134(2012) 18530-18533.
|
[68] |
C.R. Sabanayagam, J.S. Eid, A. Meller, J. Chem. Phys. 122(2005)061103.
|
[69] |
A. Pomorski, A. Krezel, Chembiochem 12(2011) 1152-1167.
|
[70] |
R.A. Scheck, A. Schepartz, Acc. Chem. Res. 44(2011) 654-665.
|
[71] |
C. Huang, Q. Yin, W. Zhu, et al., Angew. Chem. Int. Ed. 50(2011) 7551-7556.
|
[72] |
C. Huang, Q. Yin, J. Meng, et al., Chem.-Eur. J. 19(2013) 7739-7747.
|
[73] |
N. Fu, D. Su, J.R. Cort, et al., J. Am. Chem. Soc. 135(2013) 3567-3575.
|
[74] |
Z. Yang, D.H. Kang, H. Lee, et al., Bioconjugate Chem. 29(2018) 1446-1453.
|
[75] |
M. Dahmoun, K. Boman, S. Cajander, et al., J. Clin. Endocrinol. Metab. 84(1999) 1737-1743.
|
[76] |
C.B. Thompson, Science 267(1995) 1456-1462.
|
[77] |
D. Park, A.S. Don, T. Massamiri, et al., J. Am. Chem. Soc. 133(2011) 2832-2835.
|
[78] |
Y. Liu, D. Duan, J. Yao, et al., J. Med. Chem. 57(2014) 5203-5211.
|
[79] |
X. Zhang, Y. Xiao, X. Qian, Angew. Chem. Int. Ed. 47(2008) 8025-8029.
|
[80] |
Z. Zhou, M. Yu, H. Yang, et al., Chem. Commun. (2008) 3387-3389.
|
[81] |
C. Huang, T. Jia, M. Tang, et al., J. Am. Chem. Soc. 136(2014) 14237-14244.
|
[82] |
A.S. Klymchenko, Acc. Chem. Res. 50(2017) 366-375.
|
[83] |
J. Mei, N.L. Leung, R.T. Kwok, et al., Chem. Rev. 115(2015) 11718-11940.
|
[84] |
D. Su, C.L. Teoh, L. Wang, et al., Chem. Soc. Rev. 46(2017) 4833-4844.
|
[85] |
Z. Guo, A. Shao, W.H. Zhu, J. Mater. Chem. C 4(2016) 2640-2646.
|
[86] |
J. Gong, P. Wei, Y. Su, et al., Chin. Chem. Lett. 29(2018) 1493-1496.
|
[87] |
Y. Wang, X.F. Yang, Y. Zhong, et al., Chem. Sci. 7(2016) 518-524.
|
[88] |
Y. Wang, Y. Zhong, Q. Wang, et al., Anal. Chem. 88(2016) 10237-10244.
|
[89] |
F. Liu, H.J. Liu, X.J. Liu, et al., Anal. Chem. 89(2017) 11203-11207.
|
[90] |
S. Zhang, G. Chen, Y. Wang, et al., Anal. Chem. 90(2018) 2946-2953.
|
[91] |
A.C. Kimmelman, E. White, Cell Metab. 25(2017) 1037-1043.
|
[92] |
Y. He, J. Shin, W. Gong, et al., Chem. Commun. 55(2019) 2453-2456.
|
[93] |
K. Renault, J.W. Fredy, P.Y. Renard, C. Sabot, Bioconjugate Chem. 29(2018) 2497-2513.
|
[94] |
X. Chen, Y. Zhou, X. Peng, J. Yoon, Chem. Soc. Rev. 39(2010) 2120-2135.
|
[95] |
S. Girouard, M.H. Houle, A. Grandbois, et al., J. Am. Chem. Soc. 127(2005) 559-566.
|
[96] |
J. Guy, K. Caron, S. Dufresne, et al., J. Am. Chem. Soc.129(2007) 11969-11977.
|
[97] |
F. Gao, H. Chen, S. Xu, et al., Talanta 116(2013) 508-513.
|
[98] |
X. Pan, Z. Liang, J. Li, et al., Chem.-Eur. J. 21(2015) 2117-2122.
|
[99] |
J. Guy, R. Castonguay, N.B. Campos-Reales Pineda, et al., Mol. BioSyst. 6(2010) 976-987.
|
[100] |
K. Caron, V. Lachapelle, J.W. Keillor, Org. Biomol. Chem. 9(2011) 185-197.
|
[101] |
Y.Chen,C.M.Clouthier,K.Tsao,etal.,Angew.Chem.Int.Ed.53(2014)13785-13788.
|
[102] |
Y. Chen, K. Tsao, S.L. Acton, J.W. Keillor, Angew. Chem. Int. Ed. 130(2018) 12570-12574.
|
[103] |
J.J. Lee, S.C. Lee, D. Zhai, et al., Chem. Commun. 47(2011) 4508-4510.
|
[104] |
L.W. Miller, Y. Cai, M.P. Sheetz, V.W. Cornish, Nat. Methods 2(2005) 255-257.
|
[105] |
A. Gautier, A. Juillerat, C. Heinis, et al., Chem. Biol. 15(2008) 128-136.
|
[106] |
I. Nikic, T. Plass, O. Schraidt, et al., Angew. Chem. Int. Ed. 53(2014) 2245-2249.
|
[107] |
S. Leng, Q. Qiao, L. Miao, et al., Chem. Commun. 53(2017) 6448-6451.
|
[108] |
G.V. Los, L.P. Encell, M.G. McDougall, et al., ACS Chem. Biol. 3(2008) 373-382.
|
[109] |
Y. Hori, T. Norinobu, M. Sato, et al., J. Am. Chem. Soc. 135(2013) 12360-12365.
|
[110] |
S.L. Kuan, T. Wang, T. Weil, Chem.-Eur. J. 22(2016) 17112-17129.
|
[111] |
G. Liu, J. Hu, S. Liu, Chem.-Eur. J. 24(2018) 16484-16505.
|
[112] |
S. Peng, B. Zhang, X. Meng, et al., J. Med. Chem. 58(2015) 5242-5255.
|
[113] |
G. Hu, B. Zhang, P. Zhou, et al., J. Mater. Chem. B 7(2019) 2696-2702.
|
[114] |
H.M. Kim, B.R. Cho, Chem. Rev. 115(2015) 5014-5055.
|
|
|
|