|
|
Etching of gold nanorods: The effects of diameter on analytical performances |
Bingjie Zhang, Yunsheng Xia |
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China |
|
|
Guide The diameters of gold nanorods have profound effects on the analytical performances of the corresponding etching based sensing system. |
|
Abstract Gold nanorods (GNRs) have been well employed for sensing/bio-sensing based on analytes modulated morphology or self-assembly states. Herein, we employed H2O2 based etching system (H2O2 molecules themselves and H2O2-Fe2+ Fenton reagents) as an example to study the diameters of GNRs on the analytical performances, for the colorimetric platforms using GNRs as reporters. We have found that the thinner GNRs possess a higher sensitivity; while the thicker ones bring more abound color presentation during the etching processes, which is especially for naked eye detection. In addition, a red shift of the plasmonic bands is observed for three kinds of thinner GNRs at the initial stage of the etching reaction, and the mechanism is also discussed.
|
Received: 30 April 2019
|
Fund:This work isfinancially supported by the National Natural Science Foundation of China (No. 21775004) and Wanjiang Scholar Program. |
|
|
|
[1] |
K. Saha, S.S. Agasti, C. Kim, et al., Chem. Rev. 112(2012) 2739-2779.
|
[2] |
Y. Xia, Anal. Bioanal. Chem. 408(2016) 2813-2825.
|
[3] |
A.M. Mohammed, Chin. Chem. Lett. 27(2016) 801-806.
|
[4] |
Y.P. Jia, B.Y. Ma, X.W. Wei, et al., Chin. Chem. Lett. 28(2017) 691-702.
|
[5] |
J. Fu, Z. Zhang, G. Li, Chin. Chem. Lett. 30(2019) 285-291.
|
[6] |
M. Li, J. Chen, J. Pan, et al., Chin. Chem. Lett. 30(2019) 541-544.
|
[7] |
Y. Li, Q. Luo, R. Hu, et al., Chin. Chem. Lett. 29(2018) 1845-1848.
|
[8] |
H. Lei, Y. Hu, G. Li, Chin. Chem. Lett. 29(2018) 509-512.
|
[9] |
M.H. Mashhadizadeh, R.P. Talemi, Chin. Chem. Lett. 26(2015) 160-166.
|
[10] |
L. Vigderman, B.P. Khanal, E.R. Zubarev, Adv. Mater. 24(2012) 4811-4841.
|
[11] |
L. Lu, Y. Xia, Anal. Chem. 87(2015) 8584-8591.
|
[12] |
P.K. Sudeep, S.T.S. Joseph, K.G. Thomas, J. Am. Chem. Soc. 127(2005) 6516-6517.
|
[13] |
X. Liu, S. Zhang, P. Tan, et al., Chem. Commun. 49(2013) 1856-1858.
|
[14] |
Z. Chen, C. Chen, H. Huang, et al., Anal. Chem. 90(2018) 6222-6228.
|
[15] |
Z. Zhang, Z. Chen, L. Chen, Langmuir 31(2015) 9253-9259.
|
[16] |
Z. Zhang, Z. Chen, C. Qu, et al., Langmuir 30(2014) 3625-3630.
|
[17] |
Z. Zhang, Z. Chen, D. Pan, et al., Langmuir 31(2015) 643-650.
|
[18] |
X. Ma, Z. Chen, P. Kannan, et al., Anal. Chem. 88(2016) 3227-3234.
|
[19] |
Z. Zhang, Z. Chen, S. Wang, et al., ACS Appl. Mater. Interfaces 7(2015) 27639-27645.
|
[20] |
B. Nikoobakht, M.A. El-Sayed, Chem. Mater. 15(2003) 1957-1962.
|
[21] |
H. Jia, C. Fang, X.M. Zhu, et al., Langmuir 31(2015) 7418-7426.
|
[22] |
C.K. Tsung, X. Kou, Q. Shi, et al., J. Am. Chem. Soc. 128(2006) 5352-5353.
|
[23] |
X. Liu, H. Xu, H. Xia, et al., Langmuir 28(2012) 13720-13726.
|
[24] |
A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, et al., J. Am. Chem. Soc. 139(2017) 107-110.
|
|
|
|