|
|
Target-triggered inhibiting oxidase-mimicking activity of platinum nanoparticles for ultrasensitive colorimetric detection of silver ion |
Haohua Deng, Shaobin He, Xiuling Lin, Lu Yang, Zhen Lin, Ruiting Chen, Huaping Peng, Wei Chen |
Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China |
|
|
Guide A facile colorimetric method for sensitive and selective detection of Ag+ is successfully developed based on the excellent oxidase-like activity of chitosan-stabilized platinum nanoparticles and the strong metallophilic Pt2+-Ag+ interactions. |
|
Abstract The development of efficient methods for the detection of hazardous and toxic elements is extremely important for environmental security and public health. In this work, we developed a facile colorimetric assaying system for Ag+ detection in aqueous solution. Chitosan-stabilized platinum nanoparticles (ChPtNPs) were synthesized and severed as an artificial oxidase to catalyze the oxidation of the substrate 3,30,5,50-tetramethylbenzidine (TMB) and generate color signal. In the presence of Ag+, due to the strong metallophilic interactions between Ag+ and Pt2+ on the surface of Ch-PtNPs, Ag+ can weaken the affinity to the substrates and inactivate the catalytic activity of Ch-PtNPs, leading to decreased absorbance signal to varying degrees depending on Ag+ amount. Combing the specific binding between Ch-PtNPs and Ag+ with signal amplification procedure based on the Ch-PtNPs-catalyzed TMB oxidation, a sensitive, selective, simple, cost-effective, and rapid detection method for Ag+ can be realized. Ag+ ions in tap and lake waters have been successfully detected. We ensured that the proposed method can be a potential alternative for Ag+ determination in environmental samples.
|
Received: 12 April 2017
|
Fund:The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21075023, 21804021), the Program for Innovative Leading Talents in Fujian Province (No. 2016B016), the Joint Funds for the Innovation of Science and Technology, Fujian Province (No. 2016Y9056), the Natural Science Foundation of Fujian Province (No. 2017J01575), and Startup Fund for Scientific Research, Fujian Medical University (No. 2017XQ1014). |
|
|
|
[1] |
M. Li, H.L. Gou, I. Al-Ogaidi, N.Q. Wu, ACS Sustain. Chem. Eng.1(2013) 713-723.
|
[2] |
M.J. Eckelman, T.E. Graedel, Environ. Sci. Technol. 41(2007) 6283-6289.
|
[3] |
P.L. Drake, K.J. Hazelwood, Ann. Occup. Hyg. 49(2005) 575-585.
|
[4] |
G. Chakrapani, P.L. Mahanta, D.S.R. Murty, B. Gomathy, Talanta 53(2001) 1139-1147.
|
[5] |
F. Laborda, J. Jimenez-Lamana, E. Bolea, J.R. Castillo, J. Anal. Atom. Spectrom. 26(2011) 1362-1371.
|
[6] |
S.W. Brittle, J.D. Baker, K.M. Dorney, et al., J. Chem. Edu. 92(2015) 1061-1065.
|
[7] |
G.P. Yan, Y.H. Wang, X.X. He, et al., Talanta 94(2012) 178-183.
|
[8] |
A.L. Sun, F.C. Jia, Y.F. Zhang, X.N. Wang, Analyst 140(2015) 2634-2637.
|
[9] |
E.Z. Tan, P.G. Yin, X.F. Lang, et al., Analyst 137(2012) 3925-3928.
|
[10] |
H. hang, L.X. Xie, W.B. Yan, et al., New. J. Chem. 33(2009) 1478-1481.
|
[11] |
D. Le, H. Lee, G. Lee, et al., Nanotechnology 30(2018) 085501.
|
[12] |
X.Y. Li, Z.T. Wu, X.D. Zhou, J.M. Hu, Biosens. Bioelectron. 92(2017) 496-501.
|
[13] |
C.Y. Lin, C.J. Yu, Y.H. Lin, W.L. Tseng, Anal. Chem. 82(2010) 6830-6837.
|
[14] |
A. Safavi, R. Ahmadi, Z. Mohammadpour, Sens. Actuat. B-Chem. 242(2017) 609-615.
|
[15] |
M.L. Zhou, T. Lin, X.X. Gan, Microchim. Acta 184(2017) 4671-4677.
|
[16] |
J.J.X. Wu, X.Y. Wang, Q. Wang, et al., Chem. Soc. Rev. 48(2019) 1004-1076.
|
[17] |
J. Chen, Q. Chen, J.Y. Chen, H.D. Qiu, Microchim. Acta 183(2016) 3191-3199.
|
[18] |
Q. Chen, J. Chen, C.J. Gao, et al., Analyst 140(2015) 2857-2863.
|
[19] |
C.J. Gao, H.M. Zhu, J. Chen, H.D. Qiu, Chin. Chem. Lett. 28(2017) 1006-1012.
|
[20] |
Y. Huang, J. Ren, X. Qu, Chem. Rev. 119(2019) 4357-4412.
|
[21] |
A. Asati, C. Kaittanis, S. Santra, J.M. Perez, Anal. Chem. 83(2011) 2547-2553.
|
[22] |
X. Liu, Q. Wang, H.H. Zhao, et al., Analyst 137(2012) 4552-4558.
|
[23] |
M. Gao, X.F. Lu, M.Q. Chi, S.H. Chen, C. Wang, Inorg. Chem. Front. 4(2017) 1862-1869.
|
[24] |
S.G. Liu, L. Han, N. Li, et al., J. Mater. Chem. B 6(2018) 2843-2850.
|
[25] |
G.X. Cao, X.M. Wu, Y.M. Dong, Z.J. Li, G.L. Wang, Microchim. Acta 183(2016) 441-448.
|
[26] |
W.W. He, Y. Liu, J.S. Yuan, et al., Biomaterials 32(2011) 1139-1147.
|
[27] |
H.H. Deng, X.L. Lin, Y.H. Liu, et al., Nanoscale 9(2017) 10292-10300.
|
[28] |
B.H. Xia, H.X. Zhang, Y.Q. Jiao, et al., J. Chem. Phy. 120(2004) 11487-11492.
|
[29] |
X.M. Shen, W.Q. Liu, X.J. Gao, et al., J. Am. Chem. Soc. 137(2015) 15882-15891.
|
[30] |
G.W. Wu, S.B. He, H.P. Peng, et al., Anal. Chem. 86(2014) 10955-10960.
|
[31] |
Z. Xu, L.G. Xu, L.M. Liz-Marzan, et al., Adv. Optical Mater. 1(2013) 626-630.
|
[32] |
X.E. Zhao, C.H. Lei, Y. Gao, et al., Sens. Actuat. B-Chem. 253(2017) 239-246.
|
[33] |
X.H. Gao, Y.Z. Lu, R.Z. Zhang, et al., J. Mater. Chem. C 3(2015) 2302-2309.
|
[34] |
J. Lee, J. Park, H.H. Lee, et al., Biosens. Bioelectron. 68(2015) 642-647.
|
[35] |
J.H. Wang, H.Q. Wang, H.L. Zhang, et al., Anal. Bioanal. Chem. 388(2007) 969-974.
|
[36] |
Y. Yue, T.Y. Liu, H.W. Li, Z.Y. Liu, Y.Q. Wu, Nanoscale 4(2012) 2251-2254.
|
[37] |
Y.Q. Chang, Z. Zhang, J.H. Hao, W.S. Yang, J.L. Tang, Sens. Actuat. B-Chem. 232(2016) 692-697.
|
[38] |
N.T.K. Dung, R. Ludwig, New J. Chem. 23(1999) 603-607.
|
[39] |
S. Huang, Z. Wen, X. Zhu, Z. Gu, Electrochem. Commun. 6(2004) 1093-1097.
|
[40] |
B.L. Li, Y. Du, S.J. Dong, Anal. Chim. Acta 644(2009) 78-82.
|
|
|
|