|
|
Gold nanoparticles as dehydrogenase mimicking nanozymes for estradiol degradation |
Zijie Zhanga, Leslie M. Braggb, Mark R. Servosb, Juewen Liua |
a Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada;
b Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada |
|
|
Guide Small gold nanoparticles can mimic dehydrogenase activity to catalyze estradiol (E2) oxidation to estrone (E1), extending the range of nanozyme catalysis to environmentally and biologically important substrates. |
|
Abstract Nanozyme catalysis has been mainly focused on a few chromogenic and fluorogenic substrates, while environmentally and biologically important compounds need to be tested to advance the field. In this work, we studied oxidation of estradiol (E2) in the presence of various nanomaterials including gold nanoparticles (AuNPs), nanoceria (CeO2), Fe3O4, Fe2O3, MnO2 and Mn2O3, and found that AuNPs had a dehydrogenase-mimicking activity to convert E2 to estrone (E1). This conversion was monitored using HPLC. The reaction was faster at higher pH and reached saturation at pH 8. Smaller AuNPs had a higher catalytic efficiency and 5 nm AuNPs were 4.8-fold faster than 13 nm at the same total surface area. Finally, we tried 17α-ethinylestradiol (EE2) as a substrate and found that 5 nm AuNPs can catalyze EE2 oxidation in the presence of H2O2. This work indicated that some nanomaterials can affect environmentally important hormones via oxidation reactions, and this study has expanded the scope of substrate of nanozymes.
|
Received: 25 April 2019
|
|
|
|
[1] |
C.J. Gruber, W. Tschugguel, C. Schneeberger, et al., N. Engl. J. Med. 346(2002) 340-352.
|
[2] |
H.G. Burger, Fertil. Steril. 77(2002) 3-5.
|
[3] |
V.N. Luine, Horm. Behav. 66(2014) 602-618.
|
[4] |
M. Adeel, X. Song, Y. Wang, et al., Environ. Int. 99(2017) 107-119.
|
[5] |
T.F.T. Omar, A. Ahmad, A.Z. Aris, et al., TrAC-Trends Anal. Chem. 85(2016) 241-259.
|
[6] |
R.N. Tanna, G.R. Tetreault, C.J. Bennett, et al., Environ. Toxicol. Chem. 32(2013) 1981-1991.
|
[7] |
M. Giulivo, M.L. de Alda, E. Capri, et al., Environ. Res. 151(2016) 251-264.
|
[8] |
C. Zhang, Y. Li, C. Wang, et al., Crit. Rev. Environ. Sci. Technol. 46(2016) 1-59.
|
[9] |
F. Itzel, K.S. Jewell, J. Leonhardt, et al., Sci. Total Environ. 624(2018) 1443-1454.
|
[10] |
A. Roudbari, M. Rezakazemi, AMB Express 8(2018) 91.
|
[11] |
Z. Zhang, Y. Feng, Y. Liu, et al., J. Hazard. Mater. 181(2010) 1127-1133.
|
[12] |
K. Sornalingam, A. McDonagh, J.L. Zhou, Sci. Total Environ. 550(2016) 209-224.
|
[13] |
M.V. de Liz, R.M. de Lima, B. do Amaral, et al., J. Braz. Chem. Soc. 29(2018) 380-389.
|
[14] |
Y. Huang, J. Ren, X. Qu, Chem. Rev. 119(2019) 4357-4412.
|
[15] |
Y. Zhou, B. Liu, R. Yang, et al., Bioconj. Chem. 28(2017) 2903-2909.
|
[16] |
J. Wu, X. Wang, Q. Wang, et al., Chem. Soc. Rev. 48(2019) 1004-1076.
|
[17] |
S. Lin, H. Wei, Sci. China-Life Sci. 62(2019) 710-712.
|
[18] |
G. Zhang, R. Wang, G. Li, Chin. Chem. Lett. 29(2018) 687-693.
|
[19] |
W. Luo, C. Zhu, S. Su, et al., ACS Nano 4(2010) 7451-7458.
|
[20] |
M. Comotti, C. Della Pina, R. Matarrese, et al., Angew. Chem. Int. Ed. 43(2004) 5812-5815.
|
[21] |
L. Gao, J. Zhuang, L. Nie, et al., Nat. Nanotechnol. 2(2007) 577-583.
|
[22] |
A. Asati, S. Santra, C. Kaittanis, et al., Angew. Chem. Int. Ed. 48(2009) 2308-2312.
|
[23] |
M. Liu, Z. Li, Y. Li, J. Chen, Q. Yuan, Chin. Chem. Lett. 30(2019) 1009-1012.
|
[24] |
B. Liu, J. Liu, Nano Res. 10(2017) 1125-1148.
|
[25] |
Y. Hu, H. Cheng, X. Zhao, et al., ACS Nano 11(2017) 5558-5566.
|
[26] |
T. Yu, B. Liu, J. Liu, J. Anal. Test. 1(2017) 2.
|
[27] |
L.Z. Gao, K.L. Fan, X.Y. Yan, Theranostics 7(2017) 3207-3227.
|
[28] |
X. Wang, Y. Hu, H. Wei, Inorg. Chem. Front. 3(2016) 41-60.
|
[29] |
Z. Liu, X. Qu, Sci. China-Life Sci. 62(2019) 150-152.
|
[30] |
L. Yu, Y. Chen, H. Chen, Chin. Chem. Lett. 28(2017) 1841-1850.
|
[31] |
Z. Zhang, X. Zhang, B. Liu, et al., J. Am. Chem. Soc. 139(2017) 5412-5419.
|
[32] |
B. Liu, Z. Huang, J. Liu, Nanoscale 8(2016) 13562-13567.
|
[33] |
Y. Biniuri, B. Albada, M. Wolff, et al., ACS Catal. 8(2018) 1802-1809.
|
[34] |
M. Vazquez-Gonzalez, R.M. Torrente-Rodriguez, A. Kozell, et al., Nano Lett. 17(2017) 4958-4963.
|
[35] |
M.S. Hizir, M. Top, M. Balcioglu, et al., Anal. Chem. 88(2016) 600-605.
|
[36] |
D. Li, B. Liu, P.J.J. Huang, et al., Chem. Commun. 54(2018) 12519-12522.
|
[37] |
X.L. Ren, M.Q. Wang, X. He, et al., Chin. Chem. Lett. 29(2018) 1865-1868.
|
[38] |
H. Liang, F. Lin, Z. Zhang, et al., ACS Appl. Mater. Interfaces 9(2017) 1352-1360.
|
[39] |
C.I. Wang, W.T. Chen, H.T. Chang, Anal. Chem. 84(2012) 9706-9712.
|
[40] |
J.H. Xu, C.G. Hu, S.S. Hu, Chin. Chem. Lett. 20(2009) 1248-1250.
|
[41] |
B. Liu, J. Liu, ACS Appl. Mater. Interfaces 7(2015) 24833-24838.
|
[42] |
M.J. Arlos, W.J. Parker, J.R. Bicudo, et al., Sci. Total Environ. 610(2018) 1103-1112.
|
[43] |
M.J.Arlos,R.Liang,M.M.Hatat-Fraile,etal.,J.Hazard.Mater.318(2016)541-550.
|
[44] |
C. Della Pina, E. Falletta, L. Prati, et al., Chem. Soc. Rev. 37(2008) 2077-2095.
|
[45] |
T. Mallat, A. Baiker, Annu. Rev. Chem. Biomol. Eng. 3(2012) 11-28.
|
[46] |
H. Kuhl, Climacteric 8(2005) 3-63.
|
[47] |
M.M. Miettinen, M.V. Mustonen, M.H. Poutanen, et al., Biochem. J. 314(1996) 839-845.
|
[48] |
G.D. Sheng, C. Xu, L. Xu, et al., Environ. Pollut. 157(2009) 2710-2715.
|
[49] |
L.L. Engel, E.V. Groman, Human placental 17β-estradiol dehydrogenase:Characterization and structural studies, Proceedings of the 1973 Laurentian Hormone Conference, Elsevier, 1974, pp. 139-169.
|
[50] |
R. Breton, D. Housset, C. Mazza, et al., Structure 4(1996) 905-915.
|
[51] |
N.J. Lang, B. Liu, J. Liu, J. Colloid Interface Sci. 428(2014) 78-83.
|
[52] |
K. Lewis, R. Archer, Steroids 34(1979) 485-499.
|
[53] |
A. Kumar, S. Mandal, P. Selvakannan, et al., Langmuir 19(2003) 6277-6282.
|
[54] |
J. Liu, Phys. Chem. Chem. Phys. 14(2012) 10485-10496.
|
[55] |
Y. Lin, J. Ren, X. Qu, Adv. Mater. 26(2014) 4200-4217.
|
[56] |
Z. Qing, L. Zhu, S. Yang, et al., Biosens. Bioelectron. 78(2016) 471-476.
|
[57] |
D. Wang, B. Huang, J. Liu, et al., Biosens. Bioelectron. 102(2018) 389-395.
|
|
|
|