|
|
Facile and efficient fabrication of g-C3N4 quantum dots for fluorescent analysis of trace copper(II) in environmental samples |
Qin Liu, Debin Zhu, Manli Guo, Ying Yu, Yujuan Cao |
School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China |
|
|
Guide A facile and efficient fabrication of g-C3N4 quantum dots with highly fluorescent based on recrystallization and ultrasonic exfoliation was presented. The obtained g-C3N4 QDs was successfully applied to the determination of trace Cu(II) in different environmental water samples. |
|
Abstract The facile preparation of g-C3N4 QDs with high fluorescent performance has become an important direction in the last decade. Herein, we develop a facile, rapid approach to synthesize highly fluorescent QDs based on recrystallization and ultrasonic exfoliation. Size-controllable graphitic carbon nitride (gC3N4) QDs can be obtained from the precursor of recrystallized dicyandiamide, only 90 min is needed and the size of QDs is adjusted from 5 nm to 200 nm by controlling the ultrasonic time. Moreover, better fluorescent efficiency is also obtained comparing to traditional g-C3N4 QDs. The obtained g-C3N4 QDs responds to Cu(Ⅱ) in the 0.5 nmol/L to 30 μmol/L concentration range, with a 0.3 nmol/L detection limit. The method was applied to the determination of Cu(Ⅱ) in different environmental water samples.
|
Received: 25 April 2019
|
Fund:We gratefully acknowledge the support from the National Natural Science Foundation of China (No. 21605052), the Special Support Program of Guangdong Province (No. 2016TQ03R749), the Special Project of Science and Technology Development of Guangdong Province (No. 2017B020207011) and the Guangdong Natural Science Foundation (No. 2016A020221030). |
|
|
|
[1] |
S. Liu, L. Wang, J. Tian, et al., RSC Adv. 1(2011) 951-953.
|
[2] |
X. Deng, C. Wang, Y. Gao, et al., Biosens. Bioelectron. 1(2018) 211-217.
|
[3] |
M. Afiujjaman, H. Joon, K.S. Wak, Y. Lee, J. Nanosci. Nanotechnol. 18(2018) 3793-3799.
|
[4] |
Y. Zhao, L. Tan, X. Gao, G. Jie, T. Huang, Biosens. Bioelectron. 110(2018) 239-245.
|
[5] |
A. Ensafi, P. Nasr-Esfahani, B. Rezaei, Sens. Actuators B:Chem. 270(2018) 192-199.
|
[6] |
H. Xu, S. Liang, X. Zhu, et al., Biosens. Bioelectron. 92(2017) 695-701.
|
[7] |
X. Pang, C. Cui, M. Su, et al., Nano Energy 46(2018) 101-109.
|
[8] |
D. Xiao, D. Yuan, H. He, J. Lu, Luminescence 28(2013) 612-615.
|
[9] |
X. Zhang, H. Wang, H. Wang, et al., Adv. Mater. 26(2014) 4438-4443.
|
[10] |
W. Wang, C. Jimmy, Z. Shen, D. Chan, T. Gu, Chem. Commun. 50(2014) 10148-10150.
|
[11] |
Y. Su, B. Sun, S. Chen, H. Yu, J. Liu, RSC Adv. 7(2017) 14832-14836.
|
[12] |
Y. Tang, Y. Su, N. Yang, L. Zhang, Y. Lv, Anal. Chem. 86(2014) 4528-4535.
|
[13] |
X. Wei, HMX Re-crystallization and Characterization, Master Dissertation, Sichuang University, 2007.
|
[14] |
J. Tian, Q. Liu, A. Asiri, A. Al-Youbi, X. Sun, Anal. Chem. 85(2013) 5595-5599.
|
[15] |
Y. Yu, W. Yan, X. Wang, et al., Adv. Mater. 30(2018) 1705060.
|
[16] |
C. Zhang, J. Luo, L. Ou, et al., Chem.-Eur. J. 24(2018) 3030-3037.
|
[17] |
P. Yang, J. Zhao, J. Wang, et al., J. Mater. Chem. A 3(2015) 136-138.
|
[18] |
S. Chen, N. Hao, D. Jiang, et al., J. Electroanal. Chem. 787(2017) 66-71.
|
[19] |
M. Rong, X. Song, T. Zhao, et al., J. Mater. Chem. C 3(2015) 10916-10924.
|
[20] |
H. Wang, Q. Lu, M. Li, et al., Anal. Chim. Acta 1027(2018) 121-129.
|
[21] |
Z. Gong, C. Hao, Y. Chen, P. Wan, X. Meng, Chin. Chem. Lett. 28(2017) 1901-1904.
|
[22] |
M.C. Rong, K.X. Zhang, Y.R. Wang, X. Chen, Chin. Chem. Lett. 28(2017) 1119-1124.
|
|
|
|