|
|
Analytical methods for locating modifications in nucleic acids |
Chubo Qia,b, Jianghui Dinga, Bifeng Yuana, Yuqi Fenga |
a Key Laboratory of Analytical Chemistry for Biology and Medicine(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China;
b Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China |
|
|
Guide We reviewed and summarized the established methods and the breakthrough of the techniques for locating modifications in nucleic acids. In addition, we discussed the principles, applications, advantages and drawbacks of these methods. |
|
Abstract In addition to the canonical nucleobases, a variety of chemical modifications have been identified presence in nucleic acids. These modifications have been demonstrated to involve in regulating the spatiotemporal expression of genes. Up to date, over 150 types of chemical modifications have been found existence in nucleic acids. Understanding the functional roles of modifications relies on deciphering the location information of modifications in nucleic acids. Analytical methods for studying nucleic acid modifications have greatly advanced in the last decade. To locate the modifications in nucleic acids, various mass spectrometry (MS)-based analytical strategies have been established. Recent progress in next-generation sequencing (NGS) in conjugation with immunoprecipitation, chemical reaction, enzyme-mediated mutation, or nanomaterials offer genome-wide or transcriptome-wide mapping of modifications, which greatly revolutionize the field of epigenetic modifications. Herein, we reviewed and summarized the established methods and the breakthrough of the techniques for locating modifications in nucleic acids. In addition, we discussed the principles, applications, advantages and drawbacks of these methods. We believe that with the rapid advancement of techniques and methods, the functions of nucleic acid modifications will be fully understood in the future.
|
Received: 19 January 2019
|
Fund:The authors thank the National Key R&D Program of China (No. 2017YFC0906800) and the National Natural Science Foundation of China (Nos. 21672166, 21635006, 21721005, 21728802) for the financial support. |
|
|
|
[1] |
T. Carell, M.Q. Kurz, M. Muller, M. Rossa, F. Spada, Angew. Chem. Int. Ed. Engl. 57(2018) 4296-4312.
|
[2] |
P. Boccaletto, M.A. Machnicka, E. Purta, et al., Nucleic Acids Res. 46(2018) D303-D307.
|
[3] |
K. Chen, B.S. Zhao, C. He, Cell Chem. Biol. 23(2016) 74-85.
|
[4] |
B. Chen, B.F. Yuan, Y.Q. Feng, Anal. Chem. 91(2019) 743-756.
|
[5] |
T. Liu, C.J. Ma, B.F. Yuan, Y.Q. Feng, Sci. China Chem. 61(2018) 381-392.
|
[6] |
J. Song, C. Yi, ACS Chem. Biol. 12(2017) 316-325.
|
[7] |
X. Wu, Y. Zhang, Nat. Rev. Genet. 18(2017) 517-534.
|
[8] |
G.Z. Luo, C. He, Nat. Struct. Mol. Biol. 24(2017) 503-506.
|
[9] |
J. Xiong, T.T. Ye, C.J. Ma, et al., Nucleic Acids Res. 47(2019) 1268-1277.
|
[10] |
X. Lu, B.S. Zhao, C. He, Chem. Rev. 115(2015) 2225-2239.
|
[11] |
S. Kriaucionis, N. Heintz, Science 324(2009) 929-930.
|
[12] |
M. Tahiliani, K.P. Koh, Y. Shen, et al., Science 324(2009) 930-935.
|
[13] |
S. Ito, L. Shen, Q. Dai, et al., Science 333(2011) 1300-1303.
|
[14] |
Y.F. He, B.Z. Li, Z. Li, et al., Science 333(2011) 1303-1307.
|
[15] |
E.L. Greer, M.A. Blanco, L. Gu, et al., Cell 161(2015) 868-878.
|
[16] |
Q. Xie, T.P. Wu, R.C. Gimple, et al., Cell 175(2018) 1228-1243.
|
[17] |
G. Zhang, H. Huang, D. Liu, et al., Cell 161(2015) 893-906.
|
[18] |
T.P. Wu, T. Wang, M.G. Seetin, et al., Nature 532(2016) 329-333.
|
[19] |
I.A. Roundtree, M.E. Evans, T. Pan, C. He, Cell 169(2017) 1187-1200.
|
[20] |
S. Li, C.E. Mason, Annu. Rev. Genomics Hum. Genet. 15(2014) 127-150.
|
[21] |
M. Helm, Y. Motorin, Nat. Rev. Genet. 18(2017) 275-291.
|
[22] |
M.D. Lan, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30(2019) 1-6.
|
[23] |
B.F. Yuan, Y.Q. Feng, TrAC-Trend. Anal. Chem. 54(2014) 24-35.
|
[24] |
Y. Tang, J.M. Chu, W. Huang, et al., Anal. Chem. 85(2013) 6129-6135.
|
[25] |
Y. Tang, J. Xiong, H.P. Jiang, et al., Anal. Chem. 86(2014) 7764-7772.
|
[26] |
Y. Tang, S.J. Zheng, C.B. Qi, Y.Q. Feng, B.F. Yuan, Anal. Chem. 87(2015) 3445-3452.
|
[27] |
Q.Y. Li, B.F. Yuan, Y.Q. Feng, Chem. Lett. 47(2018) 1453-1459.
|
[28] |
W. Huang, M.D. Lan, C.B. Qi, et al., Chem. Sci. 7(2016) 5495-5502.
|
[29] |
H. Zeng, C.B. Qi, T. Liu, et al., Anal. Chem. 89(2017) 4153-4160.
|
[30] |
M. Buck, M. Connick, B.N. Ames, Anal. Biochem. 129(1983) 1-13.
|
[31] |
H. Grosjean, G. Keith, L. Droogmans, Methods Mol. Biol. 265(2004) 357-391.
|
[32] |
M.G. Cornelius, H.H. Schmeiser, Electrophoresis 28(2007) 3901-3907.
|
[33] |
C. Wetzel, P.A. Limbach, Analyst 141(2016) 16-23.
|
[34] |
P.A. Limbach, M.J. Paulines, Wiley Interdiscip. Rev. RNA 8(2017) e1367.
|
[35] |
T. Huang, M.R. Armbruster, J.B. Coulton, J.L. Edwards, Anal. Chem. 91(2018) 109-125.
|
[36] |
N. Hamada, Y. Hashi, S. Yamaki, et al., Chin. Chem. Lett. 30(2019) 99-102.
|
[37] |
Z. Wang, L. Chi, Chin. Chem. Lett. 29(2018) 11-18.
|
[38] |
W. Huang, C.B. Qi, S.W. Lv, et al., Anal. Chem. 88(2016) 1378-1384.
|
[39] |
W. Huang, J. Xiong, Y. Yang, et al., RSC Adv. 5(2015) 64046-64054.
|
[40] |
S. Liu, Y. Wang, Chem. Soc. Rev. 44(2015) 7829-7854.
|
[41] |
J.M. Chu, T.T. Ye, C.J. Ma, et al., ACS Chem. Biol. 13(2018) 3243-3250.
|
[42] |
J. Xiong, X. Liu, Q.Y. Cheng, et al., ACS Chem. Biol. 12(2017) 1636-1643.
|
[43] |
J.M. Chu, C.B. Qi, Y.Q. Huang, et al., Anal. Chem. 87(2015) 7364-7372.
|
[44] |
H.P. Jiang, T. Liu, N. Guo, et al., Anal. Chim. Acta 981(2017) 1-10.
|
[45] |
H.Y. Zhang, J. Xiong, B.L. Qi, Y.Q. Feng, B.F. Yuan, Chem. Commun. (Camb.) 52(2016) 737-740.
|
[46] |
H.P. Jiang, J. Xiong, F.L. Liu, et al., Chem. Sci. 9(2018) 4160-4167.
|
[47] |
A. Nyakas, S.R. Stucki, S. Schurch, J. Am. Soc. Mass. Spectrom. 22(2011) 875-887.
|
[48] |
J.A. Kowalak, S.C. Pomerantz, P.F. Crain, J.A. McCloskey, Nucleic Acids Res. 21(1993) 4577-4585.
|
[49] |
C.B. Qi, H.P. Jiang, J. Xiong, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30(2019) 553-557.
|
[50] |
M.D. Lan, J. Xiong, X.J. You, et al., Chem.-Eur. J. 24(2018) 9949-9956.
|
[51] |
M.L. Chen, F. Shen, W. Huang, et al., Clin. Chem. 59(2013) 824-832.
|
[52] |
J. Xiong, H.P. Jiang, C.Y. Peng, et al., Clin. Epigenet. 7(2015) 72.
|
[53] |
B.F. Yuan, Methods Mol. Biol. 1562(2017) 33-42.
|
[54] |
Q.Y. Cheng, J. Xiong, F. Wang, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 29(2018) 115-118.
|
[55] |
T. Suzuki, T. Suzuki, Nucleic Acids Res. 42(2014) 7346-7357.
|
[56] |
M. Taoka, Y. Nobe, Y. Yamaki, et al., Nucleic Acids Res. 46(2018) 9289-9298.
|
[57] |
X. Cao, P.A. Limbach, Anal. Chem. 87(2015) 8433-8440.
|
[58] |
M. Taoka, Y. Nobe, M. Hori, et al., Nucleic Acids Res. 43(2015) e115.
|
[59] |
J.A. Kowalak, E. Bruenger, T. Hashizume, et al., Nucleic Acids Res. 24(1996) 688-693.
|
[60] |
B. Felden, K. Hanawa, J.F. Atkins, et al., EMBO J. 17(1998) 3188-3196.
|
[61] |
P.F. Crain, J.D. Alfonzo, J. Rozenski, et al., RNA 8(2002) 752-761.
|
[62] |
B.I. Kang, K. Miyauchi, M. Matuszewski, et al., Nucleic Acids Res. 45(2017) 2124-2136.
|
[63] |
S. Douthwaite, F. Kirpekar, Methods Enzymol. 425(2007) 1-20.
|
[64] |
A.M. Giessing, F. Kirpekar, J. Proteomics 75(2012) 3434-3449.
|
[65] |
K.G. Patteson, L.P. Rodicio, P.A. Limbach, Nucleic Acids Res. 29(2001) E49.
|
[66] |
J. Mengel-Jorgensen, F. Kirpekar, Nucleic Acids Res. 30(2002) e135.
|
[67] |
B. Yu, Z. Yang, J. Li, et al., Science 307(2005) 932-935.
|
[68] |
M. Taucher, K. Breuker, Angew. Chem. Int. Ed. Engl. 51(2012) 11289-11292.
|
[69] |
H. Glasner, C. Riml, R. Micura, K. Breuker, Nucleic Acids Res. 45(2017) 8014-8025.
|
[70] |
Y. Ruike, Y. Imanaka, F. Sato, K. Shimizu, G. Tsujimoto, BMC Genomics 11(2010) 137.
|
[71] |
D. Serre, B.H. Lee, A.H. Ting, Nucleic Acids Res. 38(2010) 391-399.
|
[72] |
T.A. Down, V.K. Rakyan, D.J. Turner, et al., Nat. Biotechnol. 26(2008) 779-785.
|
[73] |
J.H. Park, J. Park, J.K. Choi, et al., BMC Med. Genomics 4(2011) 82.
|
[74] |
A.B. Brinkman, F. Simmer, K. Ma, et al., Methods 52(2010) 232-236.
|
[75] |
B. Yao, Y. Li, Z. Wang, et al., Mol. Cell 71(2018) 848-857.
|
[76] |
C.L. Xiao, S. Zhu, M. He, et al., Mol. Cell 71(2018) 306-318.
|
[77] |
G. Ficz, M.R. Branco, S. Seisenberger, et al., Nature 473(2011) 398-402.
|
[78] |
K. Williams, J. Christensen, M.T. Pedersen, et al., Nature 473(2011) 343-348.
|
[79] |
M. Ko, Y. Huang, A.M. Jankowska, et al., Nature 468(2010) 839-843.
|
[80] |
E.A. Raiber, D. Beraldi, G. Ficz, et al., Genome Biol. 13(2012) R69.
|
[81] |
K.D. Meyer, Y. Saletore, P. Zumbo, et al., Cell 149(2012) 1635-1646.
|
[82] |
D. Dominissini, S. Moshitch-Moshkovitz, S. Schwartz, et al., Nature 485(2012) 201-206.
|
[83] |
S. Schwartz, S.D. Agarwala, M.R. Mumbach, et al., Cell 155(2013) 1409-1421.
|
[84] |
B. Linder, A.V. Grozhik, A.O. Olarerin-George, et al., Nat. Methods 12(2015) 767-772.
|
[85] |
X. Li, X. Xiong, K. Wang, et al., Nat. Chem. Biol. 12(2016) 311-316.
|
[86] |
D. Dominissini, S. Nachtergaele, S. Moshitch-Moshkovitz, et al., Nature 530(2016) 441-446.
|
[87] |
D. Arango, D. Sturgill, N. Alhusaini, et al., Cell 175(2018) 1872-1886.
|
[88] |
K.D. Hansen, W. Timp, H.C. Bravo, et al., Nat. Genet. 43(2011) 768-775.
|
[89] |
M.J. Booth, M.R. Branco, G. Ficz, et al., Science 336(2012) 934-937.
|
[90] |
H. Zeng, B. He, B. Xia, et al., J. Am. Chem. Soc. 140(2018) 13190-13194.
|
[91] |
G. Hayashi, K. Koyama, H. Shiota, et al., J. Am. Chem. Soc. 138(2016) 14178-14181.
|
[92] |
M. Yu, G.C. Hon, K.E. Szulwach, et al., Cell 149(2012) 1368-1380.
|
[93] |
M.J. Booth, G. Marsico, M. Bachman, D. Beraldi, S. Balasubramanian, Nat. Chem. 6(2014) 435-440.
|
[94] |
B. Xia, D. Han, X. Lu, et al., Nat. Methods 12(2015) 1047-1050.
|
[95] |
X. Lu, C.X. Song, K. Szulwach, et al., J. Am. Chem. Soc. 135(2013) 9315-9317.
|
[96] |
M. Schaefer, T. Pollex, K. Hanna, F. Lyko, Nucleic Acids Res. 37(2009) e12.
|
[97] |
J.E. Squires, H.R. Patel, M. Nousch, et al., Nucleic Acids Res. 40(2012) 5023-5033.
|
[98] |
S. Edelheit, S. Schwartz, M.R. Mumbach, O. Wurtzel, R. Sorek, PLoS Genet. 9(2013) e1003602.
|
[99] |
U. Birkedal, M. Christensen-Dalsgaard, N. Krogh, et al., Angew. Chem. Int. Ed. Engl. 54(2015) 451-455.
|
[100] |
N. Krogh, M.D. Jansson, S.J. Hafner, et al., Nucleic Acids Res. 44(2016) 7884-7895.
|
[101] |
Q. Dai, S. Moshitch-Moshkovitz, D. Han, et al., Nat. Methods 14(2017) 695-698.
|
[102] |
C. Riml, T. Amort, D. Rieder, et al., Angew. Chem. Int. Ed. Engl. 56(2017) 13479-13483.
|
[103] |
A.L. Yablonovitch, P. Deng, D. Jacobson, J.B. Li, PLoS Genet.13(2017) e1007064.
|
[104] |
M. Sakurai, T. Yano, H. Kawabata, H. Ueda, T. Suzuki, Nat. Chem. Biol. 6(2010) 733-740.
|
[105] |
J.M. Thomas, C.A. Briney, K.D. Nance, et al., J. Am. Chem. Soc. 140(2018) 12667-12670.
|
[106] |
X. Li, P. Zhu, S. Ma, et al., Nat. Chem. Biol. 11(2015) 592-597.
|
[107] |
V.A.Herzog,B.Reichholf,T.Neumann,etal.,Nat.Methods14(2017)1198-1204.
|
[108] |
Q.Y. Li, N.B. Xie, J. Xiong, B.F. Yuan, Y.Q. Feng, Anal. Chem. 90(2018) 14622-14628.
|
[109] |
E.K. Schutsky, J.E. DeNizio, P. Hu, et al., Nat. Biotechnol. 36(2018) 1083-1090.
|
[110] |
S.U. Siriwardena, K. Chen, A.S. Bhagwat, Chem. Rev.116(2016) 12688-12710.
|
[111] |
A.E. Cozen, E. Quartley, A.D. Holmes, et al., Nat. Methods 12(2015) 879-884.
|
[112] |
T. Hong, Y. Yuan, Z. Chen, et al., J. Am. Chem. Soc. 140(2018) 5886-5889.
|
[113] |
J. Aschenbrenner, S. Werner, V. Marchand, et al., Angew. Chem. Int. Ed. Engl. 57(2018) 417-421.
|
[114] |
D.P. Morse, B.L. Bass, Biochemistry 36(1997) 8429-8434.
|
[115] |
X. Zhao, Y.T. Yu, RNA 10(2004) 996-1002.
|
[116] |
Y.T. Yu, M.D. Shu, J.A. Steitz, RNA 3(1997) 324-331.
|
[117] |
N. Liu, M. Parisien, Q. Dai, et al., RNA 19(2013) 1848-1856.
|
[118] |
P. Ryvkin, Y.Y. Leung, I.M. Silverman, et al., RNA 19(2013) 1684-1692.
|
[119] |
C. Gustafsson, B.C. Persson, J. Bacteriol. 180(1998) 359-365.
|
[120] |
D. Lafontaine, J. Vandenhaute, D. Tollervey, Gene Dev. 9(1995) 2470-2481.
|
[121] |
Z.W. Dong, P. Shao, L.T. Diao, et al., Nucleic Acids Res. 40(2012) e157.
|
[122] |
A. Bakin, J. Ofengand, Biochemistry 32(1993) 9754-9762.
|
[123] |
B.A. Flusberg, D.R. Webster, J.H. Lee, et al., Nat. Methods 7(2010) 461-465.
|
[124] |
C. Zhou, C. Wang, H. Liu, et al., Nat. Plants 4(2018) 554-563.
|
[125] |
Z. Liang, L. Shen, X. Cui, et al., Dev. Cell 45(2018) 406-416.
|
[126] |
C.X. Song, T.A. Clark, X.Y. Lu, et al., Nat. Methods 9(2012) 75-77.
|
[127] |
I.D. Vilfan, Y.C. Tsai, T.A. Clark, et al., J. Nanobiotechnol. 11(2013) 8.
|
[128] |
B.M. Venkatesan, R. Bashir, Nat. Nanotechnol. 6(2011) 615-624.
|
[129] |
J. Clarke, H.C. Wu, L. Jayasinghe, et al., Nat. Nanotechnol. 4(2009) 265-270.
|
[130] |
U. Mirsaidov, W. Timp, X. Zou, et al., Biophys. J. 96(2009) L32-L34.
|
[131] |
M. Wanunu, D. Cohen-Karni, R.R. Johnson, et al., J. Am. Chem. Soc.133(2011) 486-492.
|
[132] |
X. Lu, C. He, ChemBioChem 14(2013) 1289-1290.
|
[133] |
W.W. Li, L. Gong, H. Bayley, Angew. Chem. Int. Ed. Engl. 52(2013) 4350-4355.
|
[134] |
M. Ayub, H. Bayley, Nano Lett. 12(2012) 5637-5643.
|
[135] |
D. Elmlund, H. Elmlund, Annu. Rev. Biochem. 84(2015) 499-517.
|
[136] |
S.K. Natchiar, A.G. Myasnikov, H. Kratzat, I. Hazemann, B.P. Klaholz, Nature 551(2017) 472-477.
|
[137] |
F. Su, L. Wang, Y. Sun, et al., Chem. Commun. (Camb.) 51(2015) 3371-3374.
|
[138] |
Z.Y. Wang, L.J. Wang, Q. Zhang, B. Tang, C.Y. Zhang, Chem. Sci. 9(2018) 1330-1338.
|
|
|
|