|
|
Progress on the application of electrochemiluminescence biosensor based on nanomaterials |
Zhaoxia Shi, Gongke Li, Yufei Hu |
School of Chemistry, Sun Yat-sen University, Guangzhou 520175, China |
|
|
Guide In this review, we check out the number of published literature in the field of ECL biosensors trends during nearly a decade, and compare the research status of four different types of biosensors; summarize the application forms of nanomaterials in ECL biosensor. We have an overview of the building patterns and application example of the four main types of biosensors in the paper. |
|
Abstract Electrogenerated chemiluminescence, also known as electrochemiluminescence, abbreviated ECL, is a new technology combining electrochemistry and chemiluminescence. It is generated by high-energy electrons generated on the surface of the electrode in the emission process of excited state photons formed in the transfer process, and is a perfect combination of electrochemistry and spectroscopy. It not only has the advantages of good environment, high luminosity and wide dynamic range, but also has the characteristics of simple, stable and practical electrochemical methods, and nearly zero background signals. With the rapid development of nanomaterials, due to their unique electrical properties, large specific surface area, good biocompatibility and other characteristics, various nanomaterials have been widely used in the field of biosensors and sensitive detection. This review presented a general description of the research status of four different types of biosensors from the last decade years, summarized the application forms of nanomaterials in ECL biosensor, and outlines the building patterns and application example of the four main types of biosensors.
|
Received: 29 March 2019
|
Fund:This work was supported by the National Natural Science Foundation of China (Nos. 21675178, 21575167 and 21775167), the Guangdong Provincial Natural Science Foundation of China (No. 2016A030313358), the Research and Development Plan for Key Areas of Food Safety in Guangdong Province of China (No. 2019B020211001), and the Guangzhou Science and Technology Program of China (No. 201604020165), respectively. |
|
|
|
[1] |
Z.Y. Liu, W.J. Qi, G.B. Xu, Chem. Soc. Rev. 44(2015) 3117-3142.
|
[2] |
P. Skládal, TrAC-Trend. Anal. Chem 79(2016) 127-133.
|
[3] |
P.F. Turner Anthony, Chem. Soc. Rev. 42(2013) 3184-3196.
|
[4] |
M. Hasanzadeh, N. Shadjou, TrAC-Trends Anal. Chem. 80(2016) 167-176.
|
[5] |
N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Chem. Soc. Rev. 39(2010) 1747-1763.
|
[6] |
R.K. Zhang, Y.F. Hu, G.K. Li, Anal. Chem. 86(2014) 6080-6087.
|
[7] |
R.K. Zhang, W.T. Huang, G.K. Li, Y.F. Hu, Anal. Chem. 89(2017) 3353-3361.
|
[8] |
W.T. Huang, Y.F. Hu, Z.Y. Lu, R.K. Zhang, G.K. Li, Microchim. Acta 185(2018) 531.
|
[9] |
Q.F. Zhai, J. Li, E.K. Wang, ChemElectroChem 4(2017) 1639-1650.
|
[10] |
Y. Su, T.T. Xue, Y. Liu, J.X. Qi, Z.K. Lin, Nano Res. 1(2019) 1-15.
|
[11] |
L.L. Li, Y. Chen, J.J. Zhu, Anal. Chem. 89(2017) 358-371.
|
[12] |
J.P. Lei, H.X. Ju, TrAC-Trends Anal. Chem. 30(2011) 1351-1359.
|
[13] |
N. Myung, Y. Bae, A.J. Bard, Nano Lett 3(2003) 1053-1055.
|
[14] |
G.Z. Zou, H.X. Ju, Anal. Chem. 76(2004) 6871-6876.
|
[15] |
D. Xu, Z.L. Gao, N. Li, K.A. Li, Chin. Chem. Lett. 18(2007) 561-564.
|
[16] |
J.J. Miao, T. Ren, L. Dong, Small 1(2005) 802-805.
|
[17] |
Y.D. Wu, W.P. Peng, Q. Zhao, J.F. Piao, Chin. Chem. Lett. 28(2017) 1881-1884.
|
[18] |
S.Y. Deng, L.X. Cheng, J.P. Lei, Nanoscale 5(2013) 5435-5441.
|
[19] |
M. Hesari, K.N. Swanick, J.S. Lu, J. Am. Chem. Soc. 137(2015) 11266-11269.
|
[20] |
V.L. Colvin, Nat. Biotechnol. 21(2003) 1166-1170.
|
[21] |
A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Nano Lett. 4(2004) 11-18.
|
[22] |
W. Liu, H.S. Choi, J.P. Zimmer, J. Am. Chem. Soc. 129(2007) 14530-14531.
|
[23] |
H.Y. Zhu, S.N. Ding, Biosens. Bioelectron. 134(2019) 109-116.
|
[24] |
H. Xia, H. Li, Z. Yin, X. Hou, J.J. Zhu, ACS Appl. Mater. Interfaces 7(2015) 696-703.
|
[25] |
W. Yao, L. Wang, H.Y. Wang, Biosens. Bioelectron. 40(2013) 356-361.
|
[26] |
H.R. Zhang, Y.Z. Wang, M.S. Wu, Chem. Commun. 50(2014) 12575-12577.
|
[27] |
X.F. Tang, D. Zhao, J.C. He, Anal. Chem. 85(2013) 1711-1718.
|
[28] |
K. Shao, J. Wang, X.C. Jiang, et al., Anal. Chem. 86(2014) 5749-5757.
|
[29] |
H.Y. Yang, H.J. Wang, C.Y. Xiong, et al., Electrochim. Acta 213(2016) 512-519.
|
[30] |
S. Zadran, S. Standley, K. Wong, et al., Appl. Microbiol. Biot. 96(2016) 895-902.
|
[31] |
P. Wu, X.D. Hou, J.J. Xu, H.Y. Chen, Chem. Rev. 114(2014) 11027-11059.
|
[32] |
R. Wargnier, A.V. Baranov, V.G. Maslov, Nano Lett. 4(2004) 451-457.
|
[33] |
H.J. Wang, Y.Q. Chai, H. Li, R. Yuan, Biosens. Bioelectron. 100(2018) 35-40.
|
[34] |
G.F. Jie, J.J. Zhang, D.C. Wang, et al., Anal. Chem. 80(2008) 4033-4039.
|
[35] |
L.H. Tian, L. Liu, Y.Y. Li, Q. Wei, W. Cao, Sci. Rep. 6(2016) 1-7.
|
[36] |
K. Muzyka, Biosens. Bioelectron. 54(2014) 393-407.
|
[37] |
F.S. Bitaraf, I. Rasooli, S.L.M. Gargari, Eur. J. Clin. Microbiol. Infect. Dis. 35(2016) 503-510.
|
[38] |
X.Y. Jiang, H.J. Wang, H.J. Wang, et al., Anal. Chem. 89(2017) 4280-4286.
|
[39] |
Y.T. Liu, H.J. Wang, C.Y. Xiong, Y.Q. Chai, R. Yuan, Biosens. Bioelectron. 87(2017) 779-785.
|
[40] |
T.M. Herne, M.J. Tarlov, J. Am. Chem. Soc. 119(1997) 8916-8920.
|
[41] |
Y. Chai, D. Tian, H. Cui, Anal. Chim. Acta 715(2012) 86-92.
|
[42] |
Y. Li, Y. Zhang, L. Jiang, Sci. Rep. 6(2016) 22694.
|
[43] |
M.T. Carter, A.J. Bard, Bioconjug. Chem. 1(1990) 257-263.
|
[44] |
M. Rodriguez, A.J. Bard, Anal. Chem. 62(1990) 2658-2662.
|
[45] |
L. Dennany, R.J. Forster, J.F. Rusling, J. Am. Chem. Soc. 125(2003) 5213-5218.
|
[46] |
L.L. Liu, X.Y. Wang, Q. Ma, Z.H. Lin, X.G. Su, Anal. Chim. Acta 916(2016) 92-101.
|
[47] |
L.C. Clark, C. Lyons, Ann. N. Y. Acad. Sci. 102(1962) 29-45.
|
[48] |
S. Updike, G. Hicks, Nature 214(1967) 986-988.
|
[49] |
R. Wilson, A.P. Turner, Biosens. Bioelectron. 7(1992) 165-185.
|
[50] |
Y. Du, X.L. Luo, J.J. Xu, Biosens. Bioelectron. 70(2007) 342-347.
|
[51] |
F. Wu, J. Xu, Y. Tian, Biosens. Bioelectron. 24(2008) 198-203.
|
[52] |
X. Lu, J. Hu, X. Yao, Biomacromolecules 7(2006) 975-980.
|
[53] |
T. Li, Z. Yao, L. Ding, Sens. Actuator. B-Chem. 101(2004) 155-160.
|
[54] |
Y.T. Kong, M. Boopathi, Y.B. Shim, Biosens. Bioelectron. 19(2003) 227-232.
|
[55] |
X. Chen, H. Ye, W. Wang, Electroanalysis 22(2010) 2347-2352.
|
[56] |
D.P. Long, C.C. Chen, C.Y. Cui, P.H. Yang, Nanoscale 10(2018) 18597-18605.
|
[57] |
D. Wang, Y.N. Zheng, Y.Q. Chai, Y.L. Yuan, R. Yuan, Chem. Commun. 51(2015) 10521-10523.
|
|
|
|