|
|
Total syntheses of dehydrobotrydienal, dehydrobotrydienol and 10-oxodehydrodihydrobotrydial |
Zichun Zhanga, Dandan Zhaoa, Yingdong Hea, Zhen Yanga,b, Jianxian Gonga |
a State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
b Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences,;
Peking University, Beijing 100871, China |
|
|
Guide Concise total syntheses of dehydrobotrydienal, dehydrobotrydienol, and 10-oxodehydrodihydrobotrydial were accomplished via tandem Pauson–Khand and 6π-electrocyclization reactions. |
|
Abstract In this paper, we report the concise total syntheses of three botryane sesquiterpenoids: dehydrobotrydienal, dehydrobotrydienol, and 10-oxodehydrodihydrobotrydial. The key transformations include tandem Co-tetramethylthiourea-catalyzed Pauson–Khand and 6π-electrocyclization reactions to forge the tricyclic core structure of the botryanes, and further oxidative aromatization and oxidation to complete the total syntheses.
|
Received: 21 February 2019
|
Fund:This work was supported by the National Natural Science Foundation of China (Nos. 21772008, 21632002 and U1606403), Natural Science Foundation of Guangdong Province (No. 2016A030306011), Shenzhen Basic Research Program (Nos. JCYJ20170818090044432 and JCYJ20160226105337556) and Qingdao National Laboratory for Marine Science and Technology (No. LMDBKF201703). |
Corresponding Authors:
Zhen Yang, Jianxian Gong
E-mail: zyang@pku.edu.cn;gongjx@pku.edu.cn
|
|
|
|
[1] |
(a) A.Y. Hong, B.M. Stoltz, Angew. Chem. Int. Ed. 53(2014) 5248-5260;
|
(b) |
F. Bohlmann, C. Zdero, J. Jakupovic, H. Robinson, R.M. King, Phytochemistry 20(1981) 2239-2244.
|
[2] |
(a) J.R. Hanson, Pure Appl. Chem. 53(1981) 1155-1162;
|
(b) |
C.M. Wang, R. Hopson, X. Lin, D.E. Cane, J. Am. Chem. Soc.131(2009) 8360-8361;
|
(c) |
R.M. Coates, Z. Ho, M. Klobus, S.R. Wilson, J. Am. Chem. Soc. 118(1996) 9249-9254;
|
(d) |
P. Weyerstahl, H. Marschall, I. Seelmann, J. Jakupovic, Eur. J. Org. Chem. (1998) 1205-1212;
|
(e) |
C.E. Davis, B.C. Duffy, R.M. Coates, J. Org. Chem. 68(2003) 6935-6943.
|
[3] |
(a) I.G. Collado, A.J. Sanchez, J.R. Hanson, Nat. Prod. Rep. 24(2007) 674-686;
|
(b) |
I.G. Collado, J. Aleu, R. Hernández-Galán, R. Durcn-Patrón, Curr. Org. Chem. 4(2000) 1261;
|
(c) |
H.W. Fehlhaber, R. Geipel, H.J. Mercker, R. Tschesche, K. Welmar, F. Schönbeck, Chem. Ber. 107(1974) 1720-1730;
|
(d) |
I.G. Collado, R. Hernández-Gálan, R. Durán-Patrón, J.M. Cantoral, Photochemistry 38(1995) 647-650;
|
(e) |
F. Bohlmann, J. Ziesche, R.K. Gupta, Photochemistry 21(1982) 1331-1334;
|
(f) |
F. Bohlmann, C. Zdero, Photochemistry 21(1982) 2537-2541;
|
(g) |
A.H. Mericli, J. Jakupovic, F. Bohlmann, X.A. Dominguez, H.S. Vega, Photochemistry 28(1989) 1149-1153.
|
[4] |
J.L. Reino, Rosa Durán-Patrón, I. Segura, et al., J. Nat. Prod. 66(2003) 344-349.
|
[5] |
K. Krohn, J. Dai, U. Flörke, et al., J. Nat. Prod. 68(2005) 400-405.
|
[6] |
(a) P. Weyerstahl, H. Marschall, M. Schulze, I. Schwope, Liebigs Ann. (1996) 799-807;
|
(b) |
A.Y. Hong, B.M. Stoltz, Angew. Chem. Int. Ed. 51(2012) 9674-9678;
|
(c) |
C. Qiao, W. Zhang, J.C. Han, C.C. Li, Org. Lett. 18(2016) 4932-4935;
|
(d) |
C. Qiao, W. Zhang, J.C. Han, W.M. Dai, C.C. Li, Tetrahedron 75(2019) 1739-1745.
|
[7] |
Z. Zhang, Y. Li, D. Zhao, et al., Chem. Eur. J. 23(2017) 1258-1262.
|
[8] |
P. Tharra, B. Baire, Chem. Commun. 52(2016) 12147-12150.
|
[9] |
E.E. Maciver, P.C. Cridland, A.L. Thompson, M.D. Smith, Chem. Sci. 3(2012) 537-540.
|
[10] |
F.A. Khan, J. Dash, Ch. Sudhee, Chem. Commun. 10(2004) 2507-2519.
|
[11] |
S. Basu, V. Gupta, J. Nickel, C. Schneider, Org. Lett. 16(2014) 274-277.
|
|
|
|