|
|
Establishing the structure-activity relationship of teixobactin |
Eilidh Mathesonc, Kang Jina, Xuechen Lia,b |
a Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China;
b Laboratory of Marine Drugs and Bioprodcuts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
c School of Chemistry, University of Edinburgh, Edinburgh, UK |
|
|
Guide The updated studies have been summarized to provide structure-activity relationship of teixobactin. |
|
Abstract In 2015, a new antimicrobial peptide agent was discovered, termed teixobactin. Over the past few years, the structure-activity relationship of teixobactin has been extensively studied. Here, the updated studies have been summarized to provide structure-activity relationship established to date. It can be seen that position 1, 2, 5 and 6 of teixobactin are not tolerant of diversion from the native amino acids. In positions 7 and 11, native amino acids give the highest activity but there is tolerance for other amino acids. Positions 3, 4, 9 and 10 are very tolerant of substitution while maintaining good potency and a broad activity spectrum. Activity does not depend on absolute stereochemistry, but on the relative stereochemistry and positions 1, 4, 5, and 8 must contain D-amino acids. The ring and tail structure are necessary for activity, macrolactone and lactam rings are both acceptable. Some teixobactin analogues show greater activity than native teixobactin. All conducted animal studies show positive results with no animal deaths.
|
Received: 25 May 2019
|
Fund:This work was supported by the Research Grants Council of Hong Kong (No. C7038-15G), and the Area of Excellence Scheme of the University of Grants Committee of Hong Kong (No. AoE/P-705/16). |
Corresponding Authors:
Xuechen Li
E-mail: xuechenl@hku.hk
|
|
|
|
[1] |
World Health Organisation:Antibiotic Resistance, http://www.who.int/newsroom/fact-sheets/detail/antibiotic-resistance (accessed Nov 2018).
|
[2] |
N. Ragnar, M. Powell, B. Aronsson, et al., ECDC/EMEA Jiont Technical Report, 2009, https://doi.org/10.2900/2518.
|
[3] |
J. O'Neill, Review on Antimicrobial Resistance:Tackling a Crisis for the Health and Wealth of Nations, Review on Antimicrobial Resistance, London, in:https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf.
|
[4] |
Y. Li, K. Clark, Z. Tan, Chin. Chem. Lett. 29(2018) 1074-1078.
|
[5] |
J. Tang, J. Lu, Q. Luo, H. Wang, Chin. Chem. Lett. 29(2018) 1022-1028.
|
[6] |
H. Luo, H. Yin, C. Tang, P. Wang, F. Liang, Chin. Chem. Lett. 29(2018) 1143-1146.
|
[7] |
T. Kaeberlein, K. Lewis, S. Epstein, Science 296(2002) 1127-1129.
|
[8] |
L. Ling, T. Schneider, A. Peoples, et al., Nature 517(2015) 455-459.
|
[9] |
K. Jin, I.H. Sam, K.L. Po, et al., Nat. Comm. 7(2016) 12394.
|
[10] |
A. Giltrap, L. Dowman, G. Nagalingam, et al., Org. Lett. 18(2016) 2788-2791.
|
[11] |
D. Atkinson, B. Naysmith, D. Furkert, M. Brimble, Beilstein J. Org. Chem. 12(2016) 2325-2342.
|
[12] |
T. Homma, A. Nuxoll, A. Brown-Gandt, et al., Mbio 60(2016) 6510-6517.
|
[13] |
P. Wen, J. Vanegas, S. Rempe, E. Tajkhorshid, Chem. Sci. 9(2018) 6997-7008.
|
[14] |
M.D. Hartley, B. Imperiali, Arch. Biochem. Biophys. 517(2012) 83-97.
|
[15] |
T. Shinichi, K. Shiochi, S. Tetsuo, Chem. Lett. 4(1975) 1281-1284.
|
[16] |
A. Peoples, D. Hughes, L. Ling, et al., WO Patent:WO2014/089053A1.
|
[17] |
W.Craig,J.Chen,D.Richardson,R.Thorpe,Y.Yuan,Org. Lett.17(2015)4620-4623.
|
[18] |
B. Gao, S. Chen, Y. Hou, et al., Org. Biomol. Chem. 17(2019) 1141-1153.
|
[19] |
S. Dhara, V. Gunjal, K. Handore, D. Srinivasa Reddy, Eur. J. Org. Chem. 25(2016) 4289-4293.
|
[20] |
Y. Jad, G. Acosta, T. Naicker, et al., Org. Lett. 17(2015) 6182-6185.
|
[21] |
A. Parmar, A. Iyer, C. Vincent, et al., Chem. Comm. 52(2016) 6060-6063.
|
[22] |
A. Parmar, A. Iyer, S. Prior, et al., Chem. Sci. 8(2017) 8183-8192.
|
[23] |
K. Jin, K. Po, S. Wang, et al., Bioorg. Med. Chem. 25(2017) 4990-4995.
|
[24] |
K. Jin, K. Hiu Laam, W. Kong, et al., Bioorg. Med. Chem. 26(2018) 1062-1068.
|
[25] |
H. Yang, K. Chen, J. Nowick, ACS Chem. Biol. 11(2016) 1823-1826.
|
[26] |
S. Abdel Monaim, E. Ramchuran, A. El-Faham, et al., J. Med. Chem. 60(2017) 7476-7482.
|
[27] |
C. Wu, Z. Pan, G. Yao, et al., RSC Adv. 7(2017) 1923-1926.
|
[28] |
L. Liu, S. Wu, Q. Wang, et al., Org. Chem. Front. 5(2018) 1431-1435.
|
[29] |
Y. Zong, X. Sun, H. Gao, et al., J. Med. Chem. 61(2018) 3409-3421.
|
[30] |
D. Mandalapu, X. Ji, J. Chen, et al., J. Org. Chem. 83(2018) 7271-7275.
|
[31] |
A. Parmar, A. Iyer, D. Lloyd, et al., Chem. Commun. 53(2017) 7788-7791.
|
[32] |
K. Chen, S. Le, X. Han, J. Frias, J. Nowick, Chem. Commun. 53(2017) 11357-11359.
|
[33] |
S. Abdel Monaim, Y. Jad, E. Ramchuran, et al., ACS Omega 1(2016) 1262-1265.
|
[34] |
A. Parmar, R. Lakshminarayanan, A. Iyer, et al., J. Med. Chem. 61(2018) 2009-2017.
|
[35] |
S. Abdel Monaim, Y. Jad, G. Acosta, et al., RSC Adv. 6(2016) 73827-73829.
|
[36] |
S. Abdel Monaim, E. Ramchuran, A. El-Faham, F. Albericio, B. de la Torre, J. Med. Chem. 60(2017) 7476-7482.
|
[37] |
A. Parmar, S. Prior, A. Iyer, et al., Chem. Commun. 53(2017) 2016-2019.
|
[38] |
R. Tugyi, K. Uray, D. Iva n, et al., Proc. Natl. Acad. Sci. U. S. A. 102(2005) 413-418.
|
[39] |
G. Keating, L. Scott, Drugs 64(2004) 2347-2377.
|
[1] |
Bixing Fang, Lina Dong, Xingwei Ding, YingZi Ren, Zhongsheng Lv, Kuan Liu, Feng Zhang, Wei Zhang, Jianjian Deng, Hongbo Xin, Xiaolei Wang. Black fungus derived aerogel with double faced properties[J]. Chinese Chemical Letters, 2019, 30(06): 1178-1181. |
|
|
|
|