|
|
Significant enhancement in water resistance of Pd/Al2O3 catalyst for benzene oxidation by Na addition |
Shunyu Kanga,b, Meng Wanga,b, Na Zhua,b, Chunying Wanga,b, Hua Denga, Hong Hea,b,c |
a Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China |
|
|
Guide Appropriate Na addition led to the formation of well-dispersed metallic Pd particles, which facilitated oxygen adsorption. Proper Na addition further promoted the transformation of absorbed water into liable surface oxygen species and improved the mobility of the lattice oxygen species, which contributed to enhanced catalytic activity and water resistance. |
|
Abstract A series of Na-doped 1 wt% Pd/Al2O3 catalysts with different Na loadings were prepared by wet impregnation and tested for the catalytic oxidation of benzene. Suitable addition of Na had a remarkable promotion effect on water resistance and enhancement of low temperature activity of Pd/Al2O3 catalysts. The optimal mole ratio between Na and Pd was 1:1. The properties of the prepared catalysts were characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (O2-TPD), and in situ DRIFTS. Results indicated that the addition of Na not only decreased the content of adsorbed water species but also increased the amount of liable surface oxygen species, which are likely the key factors for the excellent water resistance of the catalyst. Na addition also improved the mobility of the lattice oxygen species, which was favorable for catalytic activity. Moreover, the well-dispersed negatively charged Pd particles and suitable redox properties derived from Na addition also contributed to the improved performance and water resistance of the Na1Pd1/Al2O3 catalyst. In situ DRIFTS results revealed that benzene was oxidized to maleate and acetate species via intermediate o-benzoquinone species, which finally turned into harmless CO2 and H2O.
|
Received: 11 January 2019
|
Fund:This work was supported by the National Natural Science Foundation of China (No. 51608504), Youth Innovation Promotion Association, and Chinese Academy of Sciences (No. 2017064). |
Corresponding Authors:
Hua Deng
E-mail: huadeng@iue.ac.cn
|
|
|
|
[1] |
Y. Shu, J. Ji, Y. Xu, et al., Appl. Catal. B-Environ. 220(2018) 78-87.
|
[2] |
J.J. Li, E.Q. Yu, S.C. Cai, et al., Appl. Catal. B-Environ. 240(2019) 141-152.
|
[3] |
J. Yang, Y. Guo, Chin. Chem. Lett. 29(2018) 252-260.
|
[4] |
H. Deng, S. Kang, C. Wang, H. He, C. Zhang, Chem. Eng. J. 348(2018) 361-369.
|
[5] |
C.J. Liang, J.W. Fang, Chem. Eng. Sci. 144(2016) 101-107.
|
[6] |
W. Tang, J. Li, X. Wu, Y. Chen, Catal. Today 258(2015) 148-155.
|
[7] |
P. Yang, S. Yang, Z. Shi, Z. Meng, R. Zhou, Appl. Catal. B-Environ.162(2015) 227-235.
|
[8] |
H.J. Joung, J.H. Kim, J.S. Oh, et al., Appl. Surf. Sci. 290(2014) 267-273.
|
[9] |
Z. Zhang, Y. Zhu, H. Asakura, et al., Nat. Commun. 8(2017) 16100.
|
[10] |
S. Zhao, B. Xu, L. Yu, Y. Fan, Chin. Chem. Lett. 29(2018) 884-886.
|
[11] |
S. Zhao, B. Xu, L. Yu, Y. Fan, Chin. Chem. Lett. 29(2018) 475-478.
|
[12] |
A.M. Ali, M.A. Daous, A.A.M. Khamis, et al., Appl. Catal. A-Gene 489(2015) 24-31.
|
[13] |
S.C. Kim, W.G. Shim, Appl. Catal. B-Environ. 92(2009) 429-436.
|
[14] |
W.W. Liu, Y.S. Feng, G.Y. Wang, W.W. Jiang, H.J. Xu, Chin. Chem. Lett. 27(2016) 905-909.
|
[15] |
S. Huang, C. Zhang, H. He, Catal. Today 139(2008) 15-23.
|
[16] |
H. Wang, W. Yang, P. Tian, et al., Appl. Catal. A-Gene 529(2017) 60-67.
|
[17] |
J. Zhu, W. Mu, L. Su, et al., J. Solid State Chem. 248(2017) 142-149.
|
[18] |
W. Tang, Y. Deng, Y. Chen, Catal. Commun. 89(2017) 86-90.
|
[19] |
L. Jiang, N. Yang, J. Zhu, C. Song, Catal. Today 216(2013) 71-75.
|
[20] |
Y. Li, C. Zhang, H. He, Catal. Today 281(2017) 412-417.
|
[21] |
M. Haneda, Y. Kintaichi, N. Bion, H. Hamada, Appl. Catal. B-Environ. 46(2003) 473-482.
|
[22] |
C. Rao, J. Shen, F. Wang, et al., Appl. Surf. Sci. 435(2018) 406-414.
|
[23] |
Q. Lin, Y. Ji, A.Z.D. Jiang, W.D. Xiao, Ind. Eng. Chem. Res. 46(2007) 7950-7954.
|
[24] |
K. Otto, L.P. Haack, J.E. Devries, Appl. Catal. B-Environ. 1(1992) 1-12.
|
[25] |
L.F. Liotta, G. Deganello, P. Delichere, C. Leclercq, G.A. Martin, J. Catal. 164(1996) 334-340.
|
[26] |
H. Huang, D.Y.C. Leung, ACS Catal. 1(2011) 348-354.
|
[27] |
H. Li, G. Lu, Q. Dai, Y. Wang, G. Yun, et al., Appl. Catal. B-Environ. 102(2011) 475-483.
|
[28] |
H. Cao, X. Li, Y. Chen, M. Gong, J. Wang, J. Rare Earths 30(2012) 871-877.
|
[29] |
F. Liu, H. He, Y. Ding, C. Zhang, Appl. Catal. B-Environ. 93(2009) 3760-3769.
|
[30] |
M. Sun, L. Yu, X.H. Na, G.Q. Diao, F. Ye, J. Fuel Chem. Technol. 41(2013) 1115-1121.
|
[31] |
Y. Wang, C. Zhang, Y. Yu, R. Yue, H. He, Catal. Today 242(2015) 294-299.
|
[32] |
L. Xue, H. He, C. Liu, C. Zhang, B. Zhang, Environ. Sci. Technol. 43(2009) 890-895.
|
[33] |
P. Yang, J. Li, Z. Cheng, S. Zuo, Appl. Catal. A-Gene 542(2017) 38-46.
|
[34] |
B.K. Min, C.M. Friend, Chem. Rev. 107(2007) 2709-2724.
|
[35] |
L. Ren, M. Mao, Y. Li, et al., Appl. Catal. B-Environ. 198(2016) 303-310.
|
[36] |
J. Lichtenberger, M.D. Amiridis, J. Catal. 223(2004) 296-308.
|
[37] |
J. Zeng, X. Liu, J. Wang, H. Lv, T. Zhu, J. Mol. Catal. A-Chem. 408(2015) 221-227.
|
[38] |
C.E. Hetrick, J. Lichtenberger, M.D. Amiridis, Appl. Catal. B-Environ. 77(2008) 255-263.
|
|
|
|