|
|
Aggregation-induced emission enhancement of yellow photoluminescent carbon dots for highly selective detection of environmental and intracellular copper(II) ions |
Wenyi Lva, Min Lina, Rongsheng Lia, Qianqian Zhangb, Hui Liua, Jian Wanga, Chengzhi Huanga,b |
a Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China;
b Chongqing Key Laboratory of Biomedical Analysis(Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China |
|
|
Guide Photoluminescent (PL) carbon nanodots (CDs) are prepared through a simple one-step hydrothermal treatment of o-phenylendiamine (OPD), and the as-prepared OPD-CDs show yellow PL emission under the ultraviolet excitation, which can be further enhanced by Cu2+ ions owing to Cu2+ ions induced aggregation of OPD-CDs through the coordination of Cu2+ with amino groups on the surface of OPD-CDs. |
|
Abstract Carbon dots (CDs) are prepared through a simple one-step hydrothermal treatment of o-phenylendiamine (OPD) and show yellow photoluminescent (PL) emission under the ultraviolet excitation, which can be further enhanced by Cu2+ ions owing to Cu2+ ions induced aggregation of OPD-CDs through the coordination of Cu2+ with amino groups on the surface of OPD-CDs. The aggregation induced emission enhancement (AIEE) property enables it feasible to develop a simple, sensitive and selective method to detect environmental and intracellular copper (Ⅱ) ions. The limit of detection as lowas 0.28 μmol/L (3σ/k) and a dynamic range from 0.5 μmol/L to 40 μmol/L make it veryeasy to detect the copper content inwater samples, such as river closure reservoir. Furthermore, fluorescence imaging of intracellular Cu2+ suggests that the AIEE features of OPD-CDs specific to Cu2+ ions can be also applied in biological systems.
|
Received: 01 March 2019
|
Fund:This work is financially supported by the National Natural Science Foundation of China (NSFC, No. 21535006). |
Corresponding Authors:
Jian Wang, Chengzhi Huang
E-mail: wj123456@swu.ewdu.cn;chengzhi@swu.edu.cn
|
|
|
|
[1] |
J.C. Claessens, P.V. Cappellen, Environ. Sci. Technol. 41(2007) 909-914.
|
[2] |
M.L. Wang, G.W. Meng, Q. Huang, Y.W. Qian, Environ. Sci. Technol. 46(2012) 367-373.
|
[3] |
Y.H. Chan, J.X. Chen, Q.S. Liu, et al., Anal. Chem. 82(2010) 3671-3678.
|
[4] |
X.J. Liu, N. Zhang, T. Bing, D.H. Shangguan, Anal. Chem. 86(2014) 2289-2296.
|
[5] |
S.Y. Lim, W. Shen, Z.Q. Gao, Chem. Soc. Rev. 44(2015) 362-381.
|
[6] |
W. Zhang, R.X. Wang, W. Liu, et al., Chem. Sci. 9(2018) 721-727.
|
[7] |
J. Zhou, Y. Yang, C.Y. Zhang, Chem. Commun. 49(2013) 8605-8607.
|
[8] |
C.Q. Ding, A.W. Zhu, Y. Tian, Acc. Chem. Res. 47(2014) 20-30.
|
[9] |
Y.Q. Dong, R.X. Wang, G.L. Li, et al., Anal. Chem. 84(2012) 6220-6224.
|
[10] |
C. Liu, D.H. Ning, C. Zhang, et al., ACS Appl. Mater. Interfaces 9(2017) 18897-18903.
|
[11] |
Q. Xu, P. Pu, J.G. Zhao, et al., J. Mater. Chem. A 3(2015) 542-546.
|
[12] |
J. Wang, R.S. Li, H.Z. Zhang, et al., Biosens. Bioelectron. 97(2017) 157-163.
|
[13] |
Y.H. Yuan, R.S. Li, Q. Wang, et al., Nanoscale 7(2015) 16841-16847.
|
[14] |
J.J. Zhao, M.J. Huang, L.L. Zhang, et al., Anal. Chem. 89(2017) 8044-8049.
|
[15] |
H.D. Huang, L. Liao, X. Xu, et al., Talanta 117(2013) 152-157.
|
[16] |
X.H. Gao, Y.Z. Lu, R.Z. Zhang, et al., J. Mater. Chem. C 3(2015) 2302-2309.
|
[17] |
Q. Wang, S.R. Zhang, Y.G. Zhong, et al., Anal. Chem. 89(2017) 1734-1741.
|
[18] |
Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Soc. Rev. 40(2011) 5361-5388.
|
[19] |
S. Zhang, J.M. Yan, A.J. Qin, J.Z. Sun, B.Z. Tang, Chin. Chem. Lett. 24(2013) 668-672.
|
[20] |
G.X. Feng, Y.Y. Yuan, H. Fang, et al., Chem. Commun. 51(2015) 12490-12493.
|
[21] |
G.X. Feng, B. Liu, Small 12(2016) 6528-6535.
|
[22] |
Z.X. Liu, Z.L. Wu, M.X. Gao, H. Liu, C.Z. Huang, Chem. Commun. 52(2016) 2063-2066.
|
[23] |
B.B. Chen, R.S. Li, M.L. Liu, H.Z. Zhang, C.Z. Huang, Chem. Commun. 53(2017) 4958-4961.
|
[24] |
J.W. Liu, Y. Lu, J. Am. Chem. Soc. 129(2007) 9838-9839.
|
[25] |
Y. Du, S.J. Guo, Nanoscale 8(2016) 2532-2543.
|
[26] |
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Small 11(2015) 1620-1636.
|
[27] |
L. Bao, C. Liu, Z.L. Zhang, D.W. Pang, Adv. Mater. 27(2015) 1663-1667.
|
[28] |
Y.H. Yuan, Z.X. Liu, R.S. Li, et al., Nanoscale 8(2016) 6770-6776.
|
[29] |
Z.L. Wu, M.X. Gao, T.T. Wang, et al., Nanoscale 6(2014) 3868-3874.
|
[30] |
C.S. Stan, C. Albu, A. Coroaba, M. Popa, D. Sutiman, J. Mater. Chem. C 3(2015) 789-795.
|
[31] |
S.W. Yang, J. Sun, X.B. Li, et al., J. Mater. Chem. A 2(2014) 8660-8667.
|
[32] |
K. Jiang, S. Sun, L. Zhang, et al., ACS Appl. Mater. Interfaces 7(2015) 23231-23238.
|
[33] |
K. Jiang, S. Sun, L. Zhang, et al., Angew. Chem. Int. Ed. 54(2015) 5360-5363.
|
[34] |
J. Lan, H.Y. Zou, Q. Wang, et al., Talanta 161(2016) 482-488.
|
[35] |
S. Liu, J.Q. Tian, L. Wang, et al., Adv. Mater. 24(2012) 2037-2041.
|
[36] |
X.F. Jia, J. Li, L. Han, et al., ACS Nano 6(2012) 3311-3317.
|
[37] |
Z.H. Li, S. Guo, C. Lu, Analyst 140(2015) 2719-2725.
|
[38] |
M.M. Luan, J.J. Chang, W. Pan, et al., Anal. Chem. 90(2018) 10951-10957.
|
[39] |
W. Pan, H.H. Wang, L.M. Yang, et al., Anal. Chem. 88(2016) 6743-6748.
|
[40] |
Z.Z. Yu, Q.Q. Sun, W. Pan, N. li, B. Tang, ACS Nano 9(2015) 11064-11074.
|
[41] |
Z.Z. Yu, P. Zhou, W. Pan, N. Li, B. Tang, Nat. Commun. 9(2018) 5044-5052.
|
|
|
|