|
|
High performance hybrid supercapacitor based on hierarchical MoS2/Ni3S2 metal chalcogenide |
Ying Liua, Depeng Zhaoa, Hengqi Liua, Ahmad Umarb, Xiang Wua |
a School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
b Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia |
|
|
Guide Herein, we synthesized hierarchical MoS2/Ni3S2 structures as electrode materials grown on nickel foam by a facile hydrothermal strategy. The hierarchical MoS2/Ni3S2 structures show high specific capacitance. |
|
Abstract Recently, because of excellent electrical conductivities and many active sites, transition metal sulfides have been utilized as efficient electrodes for supercapacitors. Herein, we synthesize hierarchical MoS2/Ni3S2 structures grown on nickel foam by a facile one-pot hydrothermal process. The as-fabricated asymmetric hybrid capacitor based on hierarchical MoS2/Ni3S2 electrode exhibit a specific capacitance of ~1.033 C/cm2 at 1 mA/cm2. Furthermore, the hybrid capacitor unveils an energy density of 35.93mWh/cm3 at a power density of 1064.76mW/cm3. The observed results clearly revealed that the synthesizedMoS2/Ni3S2 structure might be used as potential electrode material for future energy storage devices.
|
Received: 27 November 2018
|
Fund:This project is supported by State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201807). |
Corresponding Authors:
Xiang Wu
E-mail: wuxiang05@sut.edu.cn
|
|
|
|
[1] |
P. Simon, Y. Gogotsi, Nat. Mater. 7(2008) 845.
|
[2] |
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruffo, Nano Lett. 8(2008) 3498.
|
[3] |
Y.X. Zeng, Z.Z. Lai, Y. Han, et al., Adv. Mater. 30(2018) 1802396.
|
[4] |
L.Y. Liu, X. Zhang, H.X. Li, et al., Chin. Chem. Lett. 28(2017) 206-212.
|
[5] |
X. Zheng, Z.C. Han, F. Chai, et al., Dalton Trans. 45(2016) 12862-12870.
|
[6] |
L.T. Ma, S.M. Chen, Z.X. Pei, et al., ACS Nano 12(2018) 8597-8605.
|
[7] |
X. Wu, S.Y. Yao, Nano Energy 42(2017) 143-150.
|
[8] |
S.Y. Yao, F.Y. Qu, G. Wang, X. Wu, J. Alloys. Compd. 724(2017) 695-702.
|
[9] |
Y.X. Zeng, Z.Q. Lin, Z.F. Wang, et al., Adv. Mater. 30(2018)1707290.
|
[10] |
D.P. Zhao, X. Wu, C.F. Guo, Inorg. Chem. Front. 5(2018) 1378-1385.
|
[11] |
Y.F. Kan, G.Q. Ning, X.L. Ma, Chin. Chem. Lett. 28(2017) 2277-2280.
|
[12] |
Y.X. Zeng, Y. Meng, Z.Z. Lai, et al., Adv. Mater. 29(2017) 1702698.
|
[13] |
Y. Jiao, Y. Liu, B.S. Yin, et al., Nano Energy 10(2014) 90-98.
|
[14] |
W.H. Zuo, R.Z. Li, C. Zhou, et al., Adv. Sci. 4(2017) 1600539.
|
[15] |
W. Jiang, F. Hu, Q.Y. Yan, X. Wu, Inorg. Chem. Front. 4(2017) 1642-1648.
|
[16] |
H.F. Li, Q. Yang, F.N. Mo, et al., Energy Storage Mater. (2018), doi:http://dx.doi.org/10.1016/j.ensm.2018.10.005.
|
[17] |
C. Liu, X. Wu, H. Xia, CrystEngComm 20(2018) 4735-4744.
|
[18] |
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105(2010) 136805.
|
[19] |
T.Y. Wang, S.Q. Chen, H. Pang, H.G. Xue, Y. Yu, Adv. Sci. 4(2017) 1600289.
|
[20] |
G. Zhang, H.J. Liu, J.H. Qu, J.H. Li, Energy Environ. Sci. 9(2016) 1190-1209.
|
[21] |
H. Wang, H. Feng, J. Li, Small 10(2014) 2165.
|
[22] |
X.W. Ou, L. Gan, Z.T. Luo, J. Mater. Chem. A 2(2014) 19214-19220.
|
[23] |
B. Yang, L. Yu, Q. Liu, et al., CrystEngComm 17(2015) 4495-4501.
|
[24] |
M. Zhuo, P. Zhang, Y.J. Chen, Q.H. Li, RSC Adv. 5(2015) 25446-25449.
|
[25] |
J.H. Zheng, R.M. Zhang, X.G. Wang, Mater. Lett. 228(2018) 191-194.
|
[26] |
Y. Zhang, W.P. Sun, X.H. Rui, et al., Small 11(2015) 3694-3702.
|
[27] |
X. Lei, K. Yu, R.J. Qi, Z.Q. Zhu, Chem. Engn. J. 347(2018) 607-617.
|
[28] |
J. Yan, Z. Fan, W. Sun, et al., Adv. Funct. Mater. 22(2012) 2632-2641.
|
[29] |
W.D. He, C.G. Wang, H.Q. Li, et al., Adv. Energy Mater. 7(2017) 1700983.
|
[30] |
D.Z. Wang, W.L. Zhu, Y. Yuan, et al., J. Alloys. Compd. 735(2018) 1505-1513.
|
[31] |
X. Yang, H. Niu, H. Jiang, Q. Wang, F.Y. Qu, J. Mater. Chem. A 4(2016) 11264-11275.
|
[32] |
L.J. Cao, G. Tang, J. Mei, H. Liu, J. Power Sources 359(2017) 262-269.
|
[33] |
C. Chen, D. Yan, X. Luo, et al., ACS Appl. Mater. Interfaces 10(2018) 4662-4671.
|
[34] |
L.Y. Yuan, B. Yao, B. Hu, et al., Energy Environ. Sci. 6(2013) 470-476.
|
[35] |
Z. Zhang, Y. Liu, Z. Huang, L. Ren, et al., Phys. Chem. Chem. Phys.17(2015) 20795.
|
[36] |
W. Chen, R.B. Rakhi, L. Hu, et al., Nano Lett. 11(2011) 5165-5172.
|
[37] |
Y. Li, J. Xu, T. Feng, et al., Adv. Funct. Mater. 27(2017) 1606728.
|
[38] |
J.X. Gou, S.L. Xie, Y.R. Liu, C.G. Liu, Electrochim. Acta 210(2016) 915-924.
|
[39] |
J.L. Liu, J. Wang, C.H. Xu, et al., Adv. Sci. 5(2018) 1700322.
|
[40] |
C. Liu, X. Wu, Mater. Res. Bullet. 103(2018) 55-62.
|
[41] |
L. Yuan, B. Yao, F. Hu, X. Wu, A. Umar, Energy Environ. Sci. 6(2013) 470-476.
|
[42] |
L. Xing, Y.D. Dong, F. Hu, et al., Dalton Trans. 47(2018) 5687-5694.
|
[43] |
L.F. Shen, Q. Che, H.S. Li, X.G. Zhang, Adv. Funct. Mater. 24(2014) 2630-2637.
|
[44] |
M.F. El-kady, V. Strong, S. Dubin, R.B. Kaner, Science 335(2012) 1326-1330.
|
[45] |
Z.X. Liu, F.N. Mo, H.F. Li, et al., Small Methods (2018) 1800124.
|
|
|
|