|
|
Controlled PEGylation of periodic mesoporous organosilica nanospheres for improving their stability in physiological solutions |
Xiaodan Sua, Jun Taoa, Qing Wangb, Peng Xub, Wei Luoc, Meng Danga, Jiang Wud, Zhaogang Tenga,b |
a Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
b College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
c State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
d Department of Nuclear Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China |
|
|
Guide Thioether-bridged PMO nanospheres are synthesized and modified with different molecular weighted polyethylene glycol (PEG) via click reaction for the irst time. This work provides important method and knowledge to guide the modification of PMO for biomedical applications. |
|
Abstract The stability of periodic mesoporous organosilica (PMO) nanoparticles in physiological solutions greatly affects their potential biomedical applications. Herein, thioether-bridged PMO nanospheres with a diameter of 61 nm are synthesized. Then, the thioether-bridged PMO nanospheres are modified with different molecular weighted polyethylene glycol (PEG) via click reaction for the first time. FI-IR and thermogravimetric analysis confirm the successful modification of PEG on the PMO. The influence of PEG molecular weight on the dispersity and stability of the PMO-PEG in phosphate buffer (PBS) and Dulbecco's modified Eagle's medium (DMEM) is studied. The results show that the PEG coating increases the stability and dispersity of PMO in the biological solutions. The PMO-PEG1K, PMO-PEG2K, and PMOPEG5K have better stability in PBS solution. The PMO-PEG2K shows best stability and dispersity in DMEM. Over all, this work provides important method and knowledge to guide the modification of PMO for biomedical applications
|
Received: 14 January 2019
|
Fund:We greatly appreciate the financial support from the Natural Science Foundation of Jiangsu Province (Nos. BK20160017 and BK20160610), the National Natural Science Foundation of China (Nos. 21603106, 51822202 and 51772050), the State Key Laboratory of Analytical Chemistry for Life Science (No. 5431ZZXM1717), Shanghai Rising-Star Program (No. 18QA1400100), Youth Topnotch Talent Support Program of Shanghai, DHU Distinguished Young Professor Program and Fundamental Research Funds for the Central Universities. |
|
|
|
[1] |
Z.G. Teng, X.D. Su, Y. Zheng, et al., Chem. Mater. 25(2013) 98-105.
|
[2] |
Z.G. Teng, X.D. Su, B.H. Lee, et al., Chem. Mater. 26(2014) 5980-5987.
|
[3] |
Z.G. Teng, J.J. Zhang, W. Li, et al., Small 12(2016) 3550-3558.
|
[4] |
J. Tao, M. Dang, X.D. Su, et al., J. Colloid. Interf. Sci. 527(2018) 33-39.
|
[5] |
Y. Chen, J.L. Shi, Adv. Mater. 28(2016) 3235-3272.
|
[6] |
F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45(2006) 3216-3251.
|
[7] |
J.G. Croissant, X. Cattoën, M.W.C. Man, et al., Nanoscale 7(2015) 20318-20334.
|
[8] |
J.G. Croissant, Y. Fatieiev, H. Omar, et al., Chem. Eur. J. 22(2016) 1-10.
|
[9] |
X.R. Zhou, X.W. Cheng, Y.H. Zhu, et al., Chin. Chem. Lett. 29(2018) 405-416.
|
[10] |
L. Yu, W.L. Liu, Z.F. Zhang, Z.T. Song, Chin. Chem. Lett. 26(2015) 700-704.
|
[11] |
P. Han, T.C. Liu, X.W. Ji, S.K. Tang, Chin. Chem. Lett. 29(2018) 1305-1309.
|
[12] |
J.T. Dai, Y. Zhang, H.C. Lia, et al., Chin. Chem. Lett. 28(2017) 531-536.
|
[13] |
J. Wei, Y. Ren, W. Luo, et al., Chem. Mater. 29(2017) 2211-2217.
|
[14] |
J. Wei, Z.K. Sun, W. Luo, et al., J. Am. Chem. Soc. 139(2017) 1706-1713.
|
[15] |
G. Wang, J. Qin, X.R. Zhou, et al., Adv. Funct. Mater. 28(2018) 1806144.
|
[16] |
Y. Rui, X.M. Wu, B.D. Ma, et al., Chin. Chem. Lett. 29(2018) 1387-1390.
|
[17] |
P. Han, T.C. Liu, X.W. Ji, et al., Chin. Chem. Lett. 29(2018) 1305-1309.
|
[18] |
A. Salvati, A.S. Pitek, M.P. Monopoli, et al., Nat. Nanotechnol. 8(2013) 137-143.
|
[19] |
A.E. Nel, L. Mädler, D. Velegol, et al., Nat. Mater. 8(2009) 543-557.
|
[20] |
T. Cedervall, I. Lynch, S. Lindman, et al., Proc. Natl. Acad. Sci. U. S. A. 104(2007) 2050-2055.
|
[21] |
X. Du, F. Kleitz, X.Y. Li, Adv. Funct. Mater. 28(2018) 1707325.
|
[22] |
R. Gref, M. Luck, P. Quellec, et al., Colloids Surf. B Biointerfaces 18(2000) 301-313.
|
[23] |
P. Aggarwal, J.B. Hall, C.B. McLeland, et al., Adv. Drug Deliver. Rev. 61(2009) 428-437.
|
[24] |
T.A. Horbett, Cardiovasc. Pathol. 2(1993) 137-148.
|
[25] |
G. Prencipe, S.M. Tabakman, K. Welsher, et al., J. Am. Chem. Soc. 131(2009) 4783-4787.
|
[26] |
N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 40(2011) 789-800.
|
[27] |
X. Duan, Y.P. Li, Small 9(2013) 1521-1532.
|
[28] |
P. Huang, Y. Chen, H. Lin, et al., Biomaterials 125(2017) 23-37.
|
[29] |
M.Y. Wu, Q.S. Meng, Y. Chen, et al., Adv. Mater. 27(2015) 215-222.
|
[30] |
N. Lu, Y. Tian, W. Tian, et al., ACS Appl. Mater. Interfaces 8(2016) 2985-2993.
|
[31] |
H. Otsuka, Y. Nagasaki, K. Kataoka, Adv. Drug Deliver. Rev. 64(2012) 246-255.
|
[32] |
Z.G. Teng, C.Y. Wang, Y.X. Tang, et al., J. Am. Chem. Soc. 140(2018) 1385-1393.
|
[33] |
G.S. Irmukhametova, B.J. Fraser, J.L. Keddie, et al., Langmuir 28(2012) 299-306.
|
|
|
|