|
|
Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction |
Chang-Xin Zhaoa, Bo-Quan Lia, Jia-Ning Liua, Jia-Qi Huangb, Qiang Zhanga |
a Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
b Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China |
|
|
Guide A series of transition metal coordinated framework porphyrin was evaluated regarding the electrocatalytic oxygen reduction reactivity for an optimized selection of the coordinated metal ion. |
|
Abstract Oxygen reduction reaction (ORR) constitutes the core process of many clean and sustainable energy systems including fuel cells and metal-air batteries. Developing high-performance and cost-efficiency ORR electrocatalysts is of great significance to the practical applications of the above-mentioned energy storage devices. Transition metal coordinated porphyrin electrocatalysts are highly considered as a promising substitution of noble-metal-based electrocatalyst because of their high ORR reactivity, where the ORR performances of the porphyrin-based electrocatalysts are highly dependent on the transition metal center. Herein a series of framework porphyrin electrocatalysts coordinated with different transition metal centers (M-POF, where M is Mn, Fe, Co, Ni, Cu, or Zn) was designed, synthesized, and evaluated in regards of electrocatalytic ORR performances. Among all, the Co-POF electrocatalyst exhibits the best ORR performances with the highest half-wave potential of 0.81 V vs. RHE and the lowest Tafel slope of 53 mV/dec. This contribution affords an optimized high-performance ORR electrocatalyst and provides instructions for further rational design of porphyrin-based ORR electrocatalysts for sustainable energy applications.
|
Received: 07 March 2019
|
Fund:This work was supported by National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102), National Natural Science Foundation of China (No. 21825501), and Tsinghua University Initiative Scientific Research Program. |
|
|
|
[1] |
X. Ge, A. Sumboja, D. Wuu, et al., ACS Catal. 5(2015) 4643-4667.
|
[2] |
A.A. Gewirth, J.A. Varnell, A.M. DiAscro, Chem. Rev. 118(2018) 2313-2339.
|
[3] |
Y. Guo, P. Yuan, J. Zhang, et al., ACS Nano 12(2018) 1894-1901.
|
[4] |
J. Li, Z. Xi, Y.T. Pan, et al., J. Am. Chem. Soc. 140(2018) 2926-2932.
|
[5] |
H. Yuan, L. Kong, T. Li, Q. Zhang, Chin. Chem. Lett. 28(2017) 2180-2194.
|
[6] |
W.T. Hong, M. Risch, K.A. Stoerzinger, et al., Energy Environ. Sci. 8(2015) 1404-1427.
|
[7] |
Q. Wang, Y. Ji, Y. Lei, et al., ACS Energy Lett. 3(2018) 1183-1191.
|
[8] |
C.Y. Lin, D. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 30(2018) 1703646.
|
[9] |
M. Kiani, J. Zhang, Y. Luo, et al., J. Energy Chem. 27(2018) 1124-1139.
|
[10] |
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16(2017) 57-69.
|
[11] |
C. Lv, C. Yan, G. Chen, et al., Angew. Chem. Int. Ed. 57(2018) 6073-6076.
|
[12] |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355(2017) eaad4998.
|
[13] |
M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116(2016) 3594-3657.
|
[14] |
X.X. Wang, D.A. Cullen, Y.T. Pan, et al., Adv. Mater. 30(2018) 1706758.
|
[15] |
X. Zhang, X. Cheng, Q. Zhang, J. Energy Chem. 25(2016) 967-984.
|
[16] |
B.Y. Xia, Y. Yan, N. Li, et al., Nat. Energy 1(2016) 15006.
|
[17] |
H.B. Yang, J. Miao, S.F. Hung, et al., Sci. Adv. 2(2016) e1501122.
|
[18] |
S. Dou, A. Shen, L. Tao, S. Wang, Chem. Commun. (Camb.) 50(2014) 10672-10675.
|
[19] |
L. Yang, X. Zeng, W. Wang, D. Cao, Adv. Funct. Mater. 28(2018) 1704537.
|
[20] |
P. Yin, T. Yao, Y. Wu, et al., Angew. Chem. Int. Ed. 55(2016) 10800-10805.
|
[21] |
J. Wu, S. Dou, A. Shen, et al., J. Mater. Chem. A Mater. Energy Sustain. 2(2014) 20990-20995.
|
[22] |
V.M. Bau, X. Bo, L. Guo, J. Energy Chem. 26(2017) 63-71.
|
[23] |
L. Hou, J. Guo, Z. Xiang, J. Energy Chem. 28(2019) 73-78.
|
[24] |
W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Angew. Chem. Int. Ed. 55(2016) 2650-2676.
|
[25] |
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Chin. Chem. Lett. 29(2018) 1757-1767.
|
[26] |
Y. Gorlin, B. Lassalle-Kaiser, J.D. Benck, et al., J. Am. Chem. Soc. 135(2013) 8525-8534.
|
[27] |
Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energy Environ. Sci. 7(2014) 2535-2558.
|
[28] |
T. Wang, J. Wu, Y. Liu, et al., Energy Storage Mater. 16(2019) 24-30.
|
[29] |
Z. Hu, C. Chen, H. Meng, et al., Electrochem. commun. 13(2011) 763-765.
|
[30] |
S. Li, B. Li, L. Ma, J. Yang, H. Xu, Chin. Chem. Lett. 28(2017) 2159-2163.
|
[31] |
B. Yan, N.M. Concannon, J.D. Milshtein, F.R. Brushett, Y. Surendranath, Angew. Chem. Int. Ed. 56(2017) 7496-7499.
|
[32] |
J. Xiao, Y. Xia, C. Hu, J. Xi, S. Wang, J. Mater. Chem. A Mater. Energy Sustain. 5(2017) 11114-11123.
|
[33] |
J.L. Shi, C. Tang, J.Q. Huang, W. Zhu, Q. Zhang, J. Energy Chem. 27(2018) 167-175.
|
[34] |
C. Tang, Q. Zhang, Adv. Mater. 29(2017) 1604103.
|
[35] |
C. Tang, H.F. Wang, Q. Zhang, Accounts. Chem. Res. 51(2018) 881-889.
|
[36] |
M. Zhou, H.L. Wang, S. Guo, Chem. Soc. Rev. 45(2016) 1273-1307.
|
[37] |
Y. Liang, Y. Li, H. Wang, et al., Nat. Mater. 10(2011) 780-786.
|
[38] |
C. Tang, M.M. Titirici, Q. Zhang, J. Energy Chem. 26(2017) 1077-1093.
|
[39] |
J. Xie, B.Q. Li, H.J. Peng, et al., Angew. Chem. Int. Ed. 58(2019) 4963-4967.
|
[40] |
M.L. Rigsby, D.J. Wasylenko, M.L. Pegis, J.M. Mayer, J. Am. Chem. Soc. 137(2015) 4296-4299.
|
[41] |
W. Zhang, W. Lai, R. Cao, Chem. Rev. 117(2017) 3717-3797.
|
[42] |
A.N. Oldacre, A.E. Friedman, T.R. Cook, J. Am. Chem. Soc. 139(2017) 1424-1427.
|
[43] |
G. Luo, Y. Wang, Y. Li, Sci. Bull. (Beijing) 62(2017) 1337-1343.
|
[44] |
S.C. Xu, B.C. Hu, W.Y. Zhou, C.G. Sun, Z.L. Liu, Chin. Chem. Lett. 23(2012) 157-160.
|
[45] |
A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310(2005) 1166-1170.
|
[46] |
P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47(2008) 3450-3453.
|
[47] |
E.L. Spitler, W.R. Dichtel, Nat. Chem. 2(2010) 672-677.
|
[48] |
A. Bhunia, I. Boldog, A. Moeller, C. Janiak, J. Mater, Chem. A 1(2013) 14990-14999.
|
[49] |
Y. Yuan, P. Cui, Y. Tian, et al., Chem. Sci. 7(2016) 3751-3756.
|
[50] |
B.Q. Li, S.Y. Zhang, B. Wang, et al., Energy Environ. Sci. 11(2018) 1723-1729.
|
[51] |
B.Q. Li, S.Y. Zhang, L. Kong, H.J. Peng, Q. Zhang, Adv. Mater. 30(2018) 1707483.
|
[52] |
B.Q. Li, X.R. Chen, X. Chen, et al., Research 2019(2019) 4608940.
|
[53] |
L. Kong, B.Q. Li, H.J. Peng, et al., Adv. Energy Mater. 8(2018) 1800849.
|
[54] |
J.J. Xu, C.H. Xiao, S.J. Ding, Chin. Chem. Lett. 28(2017) 748-754.
|
[55] |
C. Tang, H.F. Wang, X. Chen, et al., Adv. Mater. 28(2016) 6845-6851.
|
[56] |
C. Tang, H.S. Wang, H.F. Wang, et al., Adv. Mater. 27(2015) 4516-4522..
|
|
|
|