|
|
Theoretical prediction on the reactivity of the Co-mediated intramolecular Pauson-Khand reaction for constructing bicyclo-skeletons in natural products |
Lei Zhua, Zheyuan Wanga, Song Liua, Tao Zhanga, Zhen Yangc, Ruopeng Baia, Yu Lana,b |
a School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China;
b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China;
c Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China |
|
|
Guide This work performed a theoretical investigation to explore the mechanism and reactivity of the Co-mediated intramolecular Pauson-Khand reaction for constructing bicyclo-skeletons. |
|
Abstract The Co2(CO)8-mediated intramolecular Pauson-Khand reaction is an efficient approach for constructing polycyclic skeletons. Recently, some of us reported a series of this type reactions involving stericallyhindered enynes for synthesizing natural products with reasonable reaction rates and yields. However, the reason for the high reactivity of the reaction remains unclear. We employed density functional theory calculations to clarify the mechanism and reactivity for this reaction. In contrast with chain olefin reactants, CO insertion is considered to be the rate-determining step for the overall Pauson-Khand reaction of cyclooctene derivatives. The reduced activation free energy for the alkene insertion step is attributed to:i) the electron-withdrawing group in close proximity to the C-C triple bond enhancing the reactivity of the alkyne moiety; ii) lower steric hindrance during alkene insertion when using the cyclooctene derivative. The effect of the substituent on the Co2(CO)8-mediated intramolecular PausonKhand reaction was then investigated. Internal alkenes exhibit lower reactivity than terminal alkenes because of the steric hindrance introduced by the substituted group. The cis internal alkene exhibits higher reactivity than the trans internal alkene. An ester group in close proximity to the C -C triple bond significantly enhances the reactivity.
|
Received: 23 January 2019
|
Fund:We are thankful for the project (Nos. 2018CDYJSY0055, 2018CDXZ0002, 106112017CDJXY220007) supported by the Fundamental Research Funds for the Central Universities (Chongqing University). This project was also supported by the National Natural Science Foundation of China (Nos. 21772020 and 21822303). |
|
|
|
[1] |
M. Lautens, W. Klute, W. Tam, Chem. Rev. 96(1996) 49-92.
|
[2] |
C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 111(2011) 1780-1824.
|
[3] |
T. Mesganaw, J.A. Ellman, Org. Process Res. Dev. 18(2014) 1097-1104.
|
[4] |
M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 107(2007) 3117-3179.
|
[5] |
N. Weding, M. Hapke, Chem. Soc. Rev. 40(2011) 4525-4538.
|
[6] |
J. Wencel-Delord, F. Glorius, Nat. Chem. 5(2013) 369-375.
|
[7] |
J. Yamaguchi, A.D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 51(2012) 8960-9009.
|
[8] |
K. Takao, R. Munakata, K. Tadano, Chem. Rev. 105(2005) 4779-4807.
|
[9] |
J. Le Bras, J. Muzart, Chem. Rev. 111(2011) 1170-1214.
|
[10] |
J.A. Olson, K.M. Shea, Acc. Chem. Res. 44(2011) 311-321.
|
[11] |
X. Jiang, C. Feng, G. Lu, X. Huang, Sci. China Chem. 58(2015) 1695-1709.
|
[12] |
H.W. Frühauf, Chem. Rev. 97(1997) 523-596.
|
[13] |
O. Geis, H.G. Schmalz, Angew. Chem. Int. Ed. 37(1998) 911-914.
|
[14] |
K.M. Brummond, J.L. Kent, Tetrahedron 56(2000) 3263-3283.
|
[15] |
S.E. Gibson, A. Stevenazzi, Angew. Chem. Int. Ed. 42(2003) 1800-1810.
|
[16] |
S.E. Gibson, N. Mainolfi, Angew. Chem. Int. Ed. 44(2005) 3022-3037.
|
[17] |
T. Shibata, Adv. Synth. Catal. 348(2006) 2328-2336.
|
[18] |
J.D. Ricker, L.M. Geary, Top. Catal. 60(2017) 609-619.
|
[19] |
J. Castro, A. Moyano, M.A. Pericàs, A. Riera, A.E. Greene, Tetrahedron Asymmetry 5(1994) 307-310.
|
[20] |
C. Mukai, F. Inagaki, T. Yoshida, et al., J. Org. Chem. 70(2005) 7159-7171.
|
[21] |
Y. Tang, L. Deng, Y. Zhang, et al., Org. Lett. 7(2005) 593-595.
|
[22] |
C. Mukai, T. Yoshida, M. Sorimachi, A. Odani, Org. Lett. 8(2006) 83-86.
|
[23] |
Q. Liu, G. Yue, N. Wu, et al., Angew. Chem. Int. Ed. 51(2012) 12072-12076.
|
[24] |
E. Cristóbal-Lecina, A.R. Costantino, A. Grabulosa, A. Riera, X. Verdaguer, Organometallics 34(2015) 4989-4993.
|
[25] |
T.W. Sun, W.W. Ren, Q. Xiao, et al., Chem. -Asian J. 7(2012) 2321-2333.
|
[26] |
D.R. Williams, A.A. Shah, J. Am. Chem. Soc. 136(2014) 8829-8836.
|
[27] |
Y. Zhang, J. Gong, Z. Yang, Chem. Rec. 14(2014) 606-622.
|
[28] |
K.V. Chuang, C. Xu, S.E. Reisman, Science 353(2016) 912-915.
|
[29] |
C. Lv, X. Yan, Q. Tu, et al., Angew. Chem. Int. Ed. 55(2016) 7539-7543.
|
[30] |
A. Cabre, H. Khaizourane, M. Garcon, X. Verdaguer, A. Riera, Org. Lett. 20(2018) 3953-3957.
|
[31] |
Z. Huang, J. Huang, Y. Qu, et al., Angew. Chem. Int. Ed. 57(2018) 8744-8748.
|
[32] |
I.U. Khand, G.R. Knox, P.L. Pauson, W.E. Watts, J. Chem. Soc. Perkin Trans. 1(1973) 975.
|
[33] |
I.U. Khand, G.R. Knox, P.L. Pauson, W.E. Watts, M.I. Foreman, J. Chem. Soc. Perkin Trans. 1(1973) 977.
|
[34] |
J.L. Muller, A. Rickers, W. Leitner, Adv. Synth. Catal. 349(2007) 287-291.
|
[35] |
D.R. Hartline, M. Zeller, C. Uyeda, Angew. Chem. Int. Ed. 55(2016) 6084-6087.
|
[36] |
J. Garcia-Lacuna, G. Dominguez, J. Blanco-Urgoiti, J. Perez-Castells, Chem. Commun. 53(2017) 4014-4017.
|
[37] |
Z. Zhang, Y. Li, D. Zhao, et al., Chem.-Eur. J. 23(2017) 1258-1262.
|
[38] |
F.Y. Kwong, H.W. Lee, L. Qiu, et al., Adv. Synth. Catal. 347(2005) 1750-1754.
|
[39] |
K.M. Brummond, M.M. Davis, C. Huang, J. Org. Chem. 74(2009) 8314-8320.
|
[40] |
L.C. Burrows, L.T. Jesikiewicz, G. Lu, et al., J. Am. Chem. Soc. 139(2017) 15022-15032.
|
[41] |
Y. Tang, L. Deng, Y. Zhang, et al., Org. Lett. 7(2005) 1657-1659.
|
[42] |
Z. Yang, A. Lei, J.H. Chen, et al., Synthesis 39(2007) 2565-2570.
|
[43] |
Y. Lan, L. Deng, J. Liu, et al., J. Org. Chem. 74(2009) 5049-5058.
|
[44] |
F.A. Hicks, S.L. Buchwald, J. Am. Chem. Soc. 118(1996) 11688-11689.
|
[45] |
F.A. Hicks, N.M. Kablaoui, S.L. Buchwald, J. Am. Chem. Soc. 118(1996) 9450-9451.
|
[46] |
E. Negishi, S.J. Holmes, J.M. Tour, J.A. Miller, J. Am. Chem. Soc.107(1985) 2568-2569.
|
[47] |
G. Agnel, E. Negishi, J. Am. Chem. Soc. 113(1991) 7424-7426.
|
[48] |
K. Tamao, K. Kobayashi, Y. Ito, J. Am. Chem. Soc. 110(1988) 1286-1288.
|
[49] |
M. Zhang, S.L. Buchwald, J. Org. Chem. 61(1996) 4498-4499.
|
[50] |
Y. Hoshimoto, K. Ashida, Y. Sasaoka, et al., Angew. Chem. Int. Ed. 56(2017) 8206-8210.
|
[51] |
T. Kondo, N. Suzuki, T. Okada, Ta. Mitsudo, J. Am. Chem. Soc. 119(1997) 6187-6188.
|
[52] |
K. Itami, K. Mitsudo, K. Fujita, Y. Ohashi, J. Yoshida, J. Am. Chem. Soc.126(2004) 11058-11066.
|
[53] |
C. Wang, Y.D. Wu, Organometallics 27(2008) 6152-6162.
|
[54] |
T. Shibata, K. Takagi, J. Am. Chem. Soc. 122(2000) 9852-9853.
|
[55] |
F.Y. Kwong, H.W. Lee, W.H. Lam, L. Qiu, A.S.C. Chan, Tetrahedron Asymmetry 17(2006) 1238-1252.
|
[56] |
P. Magnus, L.M. Principe, Tetrahedron Lett. 26(1985) 4851-4854.
|
[57] |
M. Yamanaka, E. Nakamura, J. Am. Chem. Soc. 123(2001) 1703-1708.
|
[58] |
T. Fjermestad, M.A. Pericas, F. Maseras, Chem.-Eur. J. 17(2011) 10050-10057.
|
[59] |
D. Lesage, A. Milet, A. Memboeuf, et al., Angew. Chem. Int. Ed. 53(2014) 1939-1942.
|
[60] |
S. Liu, H. Shen, Z. Yu, et al., Organometallics 33(2014) 6282-6285.
|
[61] |
A.M. Rodriguez, P. Prieto, Tetrahedron 72(2016) 7443-7448.
|
[62] |
J.P. Martinez, M. Vizuete, L.M. Arellano, et al., Nanoscale 10(2018) 15078-15089.
|
[63] |
Q. Xiao, W.W. Ren, Z.X. Chen, et al., Angew. Chem. Int. Ed. 50(2011) 7373-7377.
|
[64] |
D.D. Liu, T.W. Sun, K.Y. Wang, et al., J. Am. Chem. Soc. 139(2017) 5732-5735.
|
[65] |
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
|
[66] |
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37(1988) 785.
|
[67] |
A.D. Becke, J. Chem. Phys. 98(1993) 5648.
|
[68] |
M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86(1987) 866.
|
[69] |
M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 90(1989) 1730.
|
[70] |
Y. Zhao, H.T. Ng, R. Peverati, D.G. Truhlar, J. Chem. Theory Comput. 8(2012) 2824-2834.
|
[71] |
R. Peverati, D.G. Truhlar, J. Phys. Chem. Lett. 3(2012) 117-124.
|
[72] |
R. Peverati, D.G. Truhlar, Phys. Chem. Chem. Phys. 14(2012) 11363-11370.
|
[73] |
A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113(2009) 6378-6396.
|
[74] |
E. Fager-Jokela, M. Muuronen, H. Khaizourane, et al., J. Org. Chem. 79(2014) 10999-11010.
|
[75] |
T.J. de Bruin, A. Milet, A.E. Greene, Y. Gimbert, J. Org. Chem. 69(2004) 1075-1080.
|
[76] |
X. Hong, Y. Liang, M. Brewer, K.N. Houk, Org. Lett. 16(2014) 4260-4263.
|
[77] |
E.H. Krenske, E.C. Davison, I.T. Forbes, et al., J. Am. Chem. Soc.134(2012) 2434-2441.
|
[78] |
E.H. Krenske, E.W. Perry, S.V. Jerome, et al., Org. Lett. 14(2012) 3016-3019.
|
|
|
|