|
|
First-principles study of methanol adsorption on heteroatom-doped phosphorene |
Dongdong Liua, Yongliang Shib, Li Taoa, Dafeng Yana, Ru Chena, Shuangyin Wanga,c,d |
a State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China;
b ICQD/Hefei National Laboratory for Physical Sciences at Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics, University of Science and Technology of China, Hefei 230026, China;
c Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China;
d Shenzhen Research Institute of Hunan University, Shenzhen 518057, China |
|
|
Guide First-principles calculations were firstly employed to investigate the adsorption of methanol on pristine and X-doped phosphorene (X=B, C, N and O). The N and O doping improved the adsorption of phosphorene with CH3OH gas molecule, while B and C doping were almost not beneficial. |
|
Abstract First-principles calculations based on van der Waals (vdW) corrected density functional theory (DFT) are firstly employed to investigate the adsorption of methanol (CH3OH) gas molecule on pristine and Xdoped phosphorene (X=B, C, N and O). The CH3OH gas molecule is placed on the top of different phosphorene surfaces, the whole adsorption systems are fully optimized by using Vienna ab initio simulation package (VASP). The calculation results demonstrate that both pristine and heteroatomdoped phosphorene are sensitive to CH3OH gas molecule with a moderate adsorption energy and an excellent charge transfer. Among all the investigated adsorption configurations, CH3OH gas molecule is physically absorbed on pristine phosphorene and heteroatom-doped phosphorene. The N and O doping improve the adsorption of phosphorene with CH3OH gas molecule, while B and C doping are almost not beneficial compared to the pristine phosphorene. The results suggest that N-doped and O-doped phosphorene are ideal candidates used for CH3OH gas sensing.
|
Received: 04 December 2017
|
Fund:This work was supported by the National Natural Science Foundation of China (Nos. 21701043, 21573066, 51402100), the Provincial Natural Science Foundation of Hunan (Nos. 2016JJ1006, 2016TP1009), the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province and Shenzhen Science and Technology Program (No. JCYJ20170306141659388). |
Corresponding Authors:
Ru Chen, Shuangyin Wang
E-mail: chenru@hnu.edu.cn;shuangyinwang@hnu.edu.cn
|
|
|
|
[1] |
C.T. Vo, L.K. Huynh, J.Y. Hung, J.C. Jiang, Appl. Surf. Sci. 280(2013) 219-224.
|
[2] |
Q. Ding, W. Xu, P. Sang, et al., Appl. Surf. Sci. 369(2016) 257-266.
|
[3] |
J. Liu, C. Lü, C. Jin, Y. Guo, G. Wang, Chem. Res. Chin. Univ. 32(2016) 234-241.
|
[4] |
Y.Y. Chen, M. Dong, Z. Qin, et al., J. Mol. Catal. A:Chem. 338(2011) 44-50.
|
[5] |
C.C. Mayorga-Martinez, Z. Sofer, M. Pumera, Angew. Chem. Int. Ed. 54(2015) 14317-14320.
|
[6] |
A.A. Peyghan, M. Moradi, J. Iran. Chem. Soc. 12(2014) 1-6.
|
[7] |
R.J. Gasper, A. Ramasubramaniam, J. Phys. Chem. C 120(2016) 17408-17417.
|
[8] |
A. Schaefer, W.C. Cartas, R. Rai, et al., J. Phys. Chem. C 120(2016) 28617-28629.
|
[9] |
P. Du, P. Wu, C. Cai, J. Phys. Chem. C 121(2017) 9348-9360.
|
[10] |
P.P. Sahay, R.K. Nath, Sensor. Actuat. B-Chem. 134(2008) 654-659.
|
[11] |
E.S. Reich, Nature 506(2014) 7486.
|
[12] |
R. Zhang, B. Li, J. Yang, J. Phys. Chem. C 119(2015) 2871-2878.
|
[13] |
J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, Nat. Commun. 5(2014) 4475.
|
[14] |
M.Z. Rahman, W.K. Chi, K. Davey, S.Z. Qiao, Energy Environ. Sci. 9(2016) 1513-1514.
|
[15] |
A. Srivastava, M.S. Khan, S.K. Gupta, R. Pandey, Appl. Surf. Sci. 356(2015) 881-887.
|
[16] |
M. Lalitha, Y. Nataraj, S. Lakshmipathi, Appl. Surf. Sci. 377(2016) 311-323.
|
[17] |
A. Kuang, M. Kuang, H. Yuan, et al., Appl. Surf. Sci. 410(2017) 505-512.
|
[18] |
M. Arabieh, Y.T. Azar, Appl. Surf. Sci. 396(2017) 1411-1419.
|
[19] |
Q. Yang, R.S. Meng, J.K. Jiang, et al., IEEE Electron Device Lett. 37(2016) 660-662.
|
[20] |
Y. Jing, Q. Tang, P. He, Z. Zhou, P. Shen, Nanotechnology 26(2015) 095201.
|
[21] |
Y. Cai, Q. Ke, G. Zhang, Y.W. Zhang, J. Phys. Chem. C 119(2015) 3102-3110.
|
[22] |
V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phys. Chem. Chem. Phys. 17(2015) 992-1000.
|
[23] |
Z. Yu, N. Wan, S. Lei, H. Yu, J. Appl. Phys. 120(2016) 024305.
|
[24] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.
|
[25] |
N. Suvansinpan, F. Hussain, G. Zhang, et al., Nanotechnology 27(2016) 065708.
|
[26] |
L. Yang, W. Mi, X. Wang, J. Alloys Compd. 662(2016) 528-533.
|
[27] |
W. Yu, Z. Zhu, C.Y. Niu, et al., Phys. Chem. Chem. Phys. 17(2015) 16351-16358.
|
[28] |
T. Hu, J. Hong, J. Phys. Chem. C 119(2015) 8199-8207.
|
|
|
|