|
|
Facile-fabricated iron oxide nanorods as a catalyst for hydrogenation of nitrobenzene |
Yanshuang Maa,b, Liyun Zhanga, Wen Shia,b, Yiming Niua,b, Bingsen Zhanga, Dangsheng Sua |
a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
b School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China |
|
|
Guide Iron oxide nanorod catalysts were fabricated by wet chemistry method followed annealing. The facilefabricated FeOOH nanorods with an efficient catalytic performance for transfer hydrogenation of nitrobenzene with hydrazine hydrate are presented. |
|
Abstract β-FeOOH nanorods were prepared by a poly ethylene glycol (PEG) assisted precipitation of FeCl3·6H2O aqueous solution with urea. Na2CO3 aqueous solution was introduced to maintain their shapes under annealing. The one-dimensional porous iron oxide nanorods were synthesized successfully. The asprepared catalysts were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption isotherms and X-ray photoelectron spectroscopy. The hydrogenation of nitrobenzene to aniline was taken as probe reaction to evaluate their catalytic performance. FeOOH (iron oxides hydroxide) nanorods, fabricated by annealing β-FeOOH nanorods at 250℃ in Ar atmosphere for 4 h, exhibited high catalytic activity for the transfer hydrogenation of nitrobenzene to aniline with hydrazine hydrate as hydrogen donors.
|
Received: 07 March 2018
|
Fund:We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 91545119, 21761132025, 21773269, 21703262, and 51521091), Youth Innovation Promotion Association CAS (No. 2015152), and "Strategic Priority Research Program" of the Chinese Academy of Sciences (No. XDA09030103). |
Corresponding Authors:
Bingsen Zhang, Dangsheng Su
E-mail: bszhang@imr.ac.cn;dssu@imr.ac.cn
|
|
|
|
[1] |
R.V. Jagadeesh, A.E. Surkus, H. Junge, et al., Science 342(2013) 1073-1076.
|
[2] |
H. Wei, X. Liu, A. Wang, et al., Nat. Commun. 5(2014) 5634.
|
[3] |
D. Wang, D. Astruc, Chem. Rev. 115(2015) 6621-6686.
|
[4] |
K.J. Datta, A.K. Rathi, P. Kumar, et al., Sci. Rep. 7(2017) 11585.
|
[5] |
B. Wang, C. Li, B. He, et al., J. Energy Chem. 26(2017) 799-807.
|
[6] |
I.T. Papadas, S. Fountoulaki, I.N. Lykakis, G.S. Armatas, Chem.-Eur. J. 22(2016) 4600-4607.
|
[7] |
K.J. Datta, A.K. Rathi, M.B. Gawande, et al., ChemCatChem. 8(2016) 2351-2355.
|
[8] |
B. Chen, F. Li, Z. Huang, G. Yuan, J. Energy Chem. 25(2016) 888-894.
|
[9] |
F. Kazemi, A.R. Kiasat, E. Sarvestani, Chin. Chem. Lett. 19(2008) 1167-1170.
|
[10] |
C. Feng, H.Y. Zhang, N.Z. Shang, et al., Chin. Chem. Lett. 24(2013) 539-541.
|
[11] |
H. Goksu, H. Sert, B. Kilbas, F. Sen, Curr. Org. Chem. 21(2017) 794-820.
|
[12] |
D. Wang, D. Astruc, Chem. Soc. Rev. 46(2017) 816-854.
|
[13] |
Y. Li, W. Shen, Chem. Soc. Rev. 43(2014) 1543-1574.
|
[14] |
A. Chen, L. Xu, X. Zhang, et al., ACS Appl. Mater. Interfaces 8(2016) 33765-33774.
|
[15] |
X. Zhang, X. Cheng, Q. Zhang, J. Energy Chem. 25(2016) 967-984.
|
[16] |
L. Zhang, W. Shi, B. Zhang, J. Energy Chem. 26(2017) 1117-1135.
|
[17] |
L.S. Zhong, J.S. Hu, H.P. Liang, et al., Adv. Mater. 18(2006) 2426-2431.
|
[18] |
J. Ouyang, J. Pei, Q. Kuang, et al., ACS Appl. Mater. Interfaces 6(2014) 12505-12514.
|
[19] |
L. Shang, T. Bian, B. Zhang, et al., Angew. Chem. Int. Ed. 126(2014) 254-258.
|
[20] |
S. Abate, G. Centi, P. Lanzafame, S. Perathoner, J. Energy Chem. 24(2015) 535-547.
|
[21] |
S. Buller, J. Strunk, J. Energy Chem. 25(2016) 171-190.
|
[22] |
H.Z. Cui, Y.Q. Gu, X.X. He, et al., Sci. Bull. 61(2016) 220-226.
|
[23] |
L. Shang, Y. Liang, M. Li, et al., Adv. Funct. Mater. 27(2017) 1606215.
|
[24] |
J. Yang, Y. Guo, Chin. Chem. Lett. 29(2018) 252-260.
|
[25] |
H. Niu, J. Lu, J. Song, et al., Ind. Eng. Chem. Res. 55(2016) 8527-8533.
|
[26] |
X. Mou, B. Zhang, Y. Li, et al., Angew. Chem. Int. Ed. 51(2012) 2989-2993.
|
[27] |
P.C. Wu, W.S. Wang, Y.T. Huang, et al., Chem.-Eur. J. 13(2007) 3878-3885.
|
[28] |
F. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids:Principles, Methodology, and Applications, Academic Press, London, 1999.
|
[29] |
L. Zeng, K. Li, H. Wang, et al., J. Phys. Chem. C 121(2017) 12696-12710.
|
[30] |
J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2(2000) 1319-1324.
|
[31] |
D. Cantillo, M.M. Moghaddam, C.O. Kappe, J. Org. Chem. 78(2013) 4530-4542.
|
[32] |
Q.X. Shi, R.W. Lu, K. Jin, et al., Green. Chem. 8(2006) 868-870.
|
[33] |
G. Wienhofer, I. Sorribes, A. Boddien, et al., J. Am. Chem. Soc.133(2011) 12875-12879.
|
[34] |
G. Wang, H. Wang, Y. Ling, et al., Nano. Lett. 11(2011) 3026-3033.
|
|
|
|