|
|
Synthesis of cyclic peptide reniochalistatin E and conformational isomers |
Huiyun Luoa, Hongli Yinb, Chaojun Tangc, Ping Wangb, Feng Lianga |
a The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
b Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
c Chonqqing Huapont Pharm. Co., Ltd., Chongqing 401121, China |
|
|
Guide Here we describe a convergent synthesis of reniochalistatin E that utilized solid-phase peptide synthesis. For macrolactamization of the linear peptides without the side chain protecting group, we obtained reniochalistatin E and its conformational isomers with 32% isolation yield. |
|
Abstract Here, we report a convenient and efficient synthesis strategy for the total synthesis of cyclic peptide reniochalistatin E and its conformational isomers with 32% overall yield. We found the linear peptide precursor without side chain gave better cyclization yield.
|
Received: 15 March 2018
|
Fund:This work is supported by the National Natural Science Foundation of China (No. 21372183), and Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (No. T201702). |
Corresponding Authors:
Ping Wang, wangp1@sjtu.edu.cn;Feng Liang, feng_liang@wust.edu.cn
E-mail: wangp1@sjtu.edu.cn;feng_liang@wust.edu.cn
|
|
|
|
[1] |
T. Doi, S. Kamioka, S. Shimazu, T. Takahashi, Org. Lett. 10(2008) 817-819.
|
[2] |
H.M. Geng, Q.Y. Zong, J. You, et al., Sci. China Chem. 59(2016) 293-302.
|
[3] |
K. Burgess, D. Lim, C.I. Martinez, Angew. Chem. Int. Ed. 35(1996) 1077-1078.
|
[4] |
C. Thompson, M. Ge, D. Kahne, J. Am. Chem. Soc. 121(1999) 1237-1244.
|
[5] |
M.B. Choussy, L. Neuville, R. Beugelmans, J.P. Zhu, J. Org. Chem. 61(1996) 9309-9322.
|
[6] |
X.Y. Wu, J.L. Stockdill, P. Wang, S.J. Danishefsky, J. Am. Chem. Soc. 132(2012) 4098-4100.
|
[7] |
H.Y. Lam, Y.F. Zhang, H. Liu, et al., J. Am. Chem. Soc. 135(2013) 6272-6279.
|
[8] |
K. Jin, I.H. Sam, K.H.L. Po, et al., Nat. Commun. 7(2016) 12394-12399.
|
[9] |
A.M. Giltrap, L.J. Dowman, G. Nagalingam, et al., Org. Lett.18(2016) 2788-2791.
|
[10] |
P. Desai, S.S. Pfeiffer, D.L. Boger, Org. Lett. 5(2003) 5047-5050.
|
[11] |
K.X. Zhan, W.H. Jiao, F. Yang, et al., J. Nat. Prod. 77(2014) 2678-2684.
|
[12] |
A. Fatino, G. Baca, C. Weeramange, et al., J. Nat. Prod. 80(2017) 3234-3240.
|
[13] |
R.B. Merrifield, J. Am. Chem. Soc. 85(1963) 2149-2154.
|
[14] |
H.K. Cui, Y. Guo, Y. He, et al., Angew. Chem. Int. Ed. 52(2013) 9558-9562.
|
[15] |
C.M. Zhang, J.X. Guo, L. Wang, et al., Chin. Chem. Lett. 22(2011) 631-634.
|
[16] |
J. Chen, B. Zhang, C. Xie, Y. Lu, W. Wu, Chin. Chem. Lett. 21(2010) 391-394.
|
[17] |
P.J. Knerr, W.A. Donk, J. Am. Chem. Soc. 135(2013) 7094-7097.
|
[18] |
H. Zheng, F. Wang, Q. Wang, J.M. Gao, J. Am. Chem. Soc. 133(2011) 15280-15283.
|
[19] |
Z.M. Wu, S.Z. Liu, X.Z. Cheng, X.R. Zhao, H.F. Hong, Chin. Chem. Lett. 28(2017) 553-557.
|
[20] |
E.K. Singh, D.M. Ramsey, S.R. McAlpine, Org. Lett. 14(2012) 1198-1201.
|
[21] |
K. Barlos, D. Gatos, J. Kallitsis, et al., Tetrahedron Lett. 30(1989) 3943-3946.
|
|
|
|