|
|
Chemical synthesis and structural analysis of guanylate cyclase C agonist linaclotide |
Chenchen Chena,b, Shuai Gaoc, Qian Quc, Pengcheng Mid, Anjin Taod, Yi-Ming Lic |
a High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
b School of Life Sciences, University of Science and Technology of China, Hefei 230026, China;
c School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, China;
d Hybio Pharmaceutical Co., Ltd., Shenzhen 518057, China |
|
|
Guide Linaclotide and its D-enantiomer were obtained through Fmoc solid phase peptide synthesis method and co-crystalized through racemic crystallization. The crystal structure showed that linaclotide has a tight, three-beta turns structure immobilized by three pairs of disulfide bonds. |
|
Abstract Guanylate cyclase C (GC-C) is an important receptor protein expressed by intestinal epithelial cells, and its dysregulation leads to severe intestinal diseases. Linaclotide is a 14-amino acid peptide approved by the FDA for the treatment of irritable bowel syndrome with constipation (IBS-C), which activates guanylate cyclase C to accelerate intestinal transit. Drug molecule design based on structural information plays a crucial role and the activity of linaclotide still need to improve, while the structure of linaclotide remains unknown. In this work, linaclotide and its D-enantiomer were obtained through Fmoc solid phase peptide synthesis method and co-crystalized through racemic crystallization. The crystal structure showed that linaclotide has a tight, three-beta turns structure immobilized by three pairs of disulfide bonds.
|
Received: 20 November 2017
|
Fund:This work was supported by the National Natural Science Foundation of China (NSFC No. 21572043) and the Fundamental Research Funds for the Central Universities (No. PA2017GDQT0021). |
Corresponding Authors:
Yi-Ming Li, ymli@hfut.edu.cn
E-mail: ymli@hfut.edu.cn
|
|
|
|
[1] |
G.F. Longstreth, W.G. Thompson, W.D. Chey, et al., Gastroenterology 130(2006) 1480-1491.
|
[2] |
A.P. Hungin, L. Chang, G.R. Locke, et al., Aliment. Pharmacol. Ther. 21(2005) 1365-1375.
|
[3] |
L.J. Brandt, W.D. Chey, A.E. Foxx-Orenstein, et al., Am. J. Gastroenterol. 104(Suppl. 1) (2009) S1-S35.
|
[4] |
A.P. Hungin, P.J. Whorwell, J. Tack, et al., Aliment. Pharmacol. Ther. 17(2003) 643-650.
|
[5] |
W.D. Chey, A.J. Lembo, B.J. Lavins, et al., Am. J. Gastroenterol. 107(2012) 1702-1712.
|
[6] |
S. Gao, A.J. Lembo, S.J. Shiff, et al., Am. J. Gastroenterol. 107(2012) 1714-1724.
|
[7] |
E.A. Mayer, N. Engl. J. Med. 358(2008) 1692-1699.
|
[8] |
R.W. Busby, A.P. Bryant, W.P. Bartolini, et al., Eur. J. Pharmacol. 649(2010) 328-335.
|
[9] |
J. Gastro, A.M. Harrington, P.A. Hughes, et al., Gastroenterology 145(2013) 1334-1346.
|
[10] |
A.P. Bryant, R.W. Busby, W.P. Bartolini, et al., Life Sci. 86(2010) 760-765.
|
[11] |
H. Eutamene, S. Bradesi, M. Larauche, et al., Neurogastroenterol. Motil. 22(2010) 312-e84.
|
[12] |
C.D. Fjell, J.A. Hiss, R.E.W. Hancock, G. Schneider, Nat. Rev. Drug Discov. 11(2012) 37-51.
|
[13] |
B.G. Livett, K.R. Gayler, Z. Khalil, Curr. Med. Chem. 11(2004) 1715-1723.
|
[14] |
T.O. Yeates, S.B.H. Kent, Annu. Rev. Biophys. 41(2012) 41-61.
|
[15] |
B.J. Yan, L.Z. Ye, W.L. Xu, L. Liu, Bioorg. Med. Chem. 25(2017) 4953-4965.
|
[16] |
H. Yeung, C.J. Squire, Y. Yosaatmadja, et al., Angew. Chem. Int. Ed. 55(2016) 7930-7933.
|
[17] |
K. Mandal, B. Dhayalan, M. Avital-Shmilovici, et al., ChemBioChem 17(2016) 421-425.
|
[18] |
R.D. Bunker, K. Mandal, G. Bashiri, et al., Proc. Natl. Acad. Sci. U. S. A. 112(2015) 4310-4315.
|
[19] |
C.K. Wang, G.J. King, S.E. Northfield, et al., Angew. Chem. Int. Ed. 53(2014) 11236-11241.
|
[20] |
S. Gao, M. Pan, Y. Zheng, et al., J. Am. Chem. Soc. 138(2016) 14497-14502.
|
[21] |
M. Pan, S. Gao, Y. Zheng, et al., J. Am. Chem. Soc. 138(2016) 7429-7435.
|
[22] |
C.L. Zhang, S. Liu, X.C. Liu, et al., Chin. Chem. Lett. 28(2017) 1523-1527.
|
[23] |
Y. Huang, W.H. Feng, Chin. Chem. Lett. 27(2016) 357-360.
|
[24] |
Z.M. Wu, S.Z. Liu, X.Z. Cheng, et al., Chin. Chem. Lett. 27(2016) 1731-1739.
|
[25] |
H. Ozaki, T. Sato, H. Kubota, et al., J. Biol. Chem. 266(1991) 5934-5941.
|
[26] |
M. Gongora-Benitez, J. Tulla-Puche, M. Paradis-Bas, et al., Pept. Sci. 96(2011) 69-80.
|
[27] |
Y.C. Huang, G.M. Fang, L. Liu, Natl. Sci. Rev. 3(2016) 107-116.
|
[28] |
G.M. Fang, Y.M. Li, F. Shen, et al., Angew. Chem. Int. Ed. 50(2011) 7645-7649.
|
[29] |
X.L. Tan, M. Pan, Y. Zheng, et al., Chem. Sci. 8(2017) 6881-6887.
|
[30] |
Y.T. Li, C. Yi, C.C. Chen, et al., Nat. Commun. 8(2017) 14846.
|
[31] |
Z. Wang, W. Xu, L. Liu, T.F. Zhu, Nat. Chem. 8(2016) 698-704.
|
[32] |
X.D. Tan, M. Pan, S. Gao, et al., Chem. Commun. 53(2017) 10208-10211.
|
[33] |
Y.C. Huang, C.J. Guan, X.L. Tan, et al., Org. Biomol. Chem. 13(2015) 1500-1506.
|
[34] |
C.C. Chen, Y.C. Huang, L. Xu, et al., Org. Biomol. Chem. 12(2014) 9413-9418.
|
[35] |
Y.C. Huang, C.C. Chen, S. Gao, et al., Chem. Eur. J. 22(2016) 7623-7628.
|
[36] |
S. Tang, Y.Y. Si, Z.P. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 5713-5717.
|
[37] |
J.X. Wang, G.M. Fang, Y. He, et al., Angew. Chem. Int. Ed. 54(2015) 2194-2198.
|
[38] |
G.M. Fang, J.X. Wang, L. Liu, Angew. Chem. Int. Ed. 51(2012) 10347-10350.
|
[39] |
S. Bondalapati, E. Eid, S.M. Mali, et al., Chem. Sci. 8(2017) 4027-4034.
|
[40] |
K. Medini, P.W.R. Harris, A. Menorca, et al., Chem. Sci. 7(2016) 2005-2010.
|
[41] |
S. Tang, Z. Wan, Y. Gao, et al., Chem. Sci. 7(2016) 1891-1895.
|
[42] |
T. Wu, Y.H. Li, X. Li, et al., Chem. Sci. 8(2017) 7368-7373.
|
[43] |
M. Pan, Y. He, M. Wen, et al., Chem. Commun. 50(2014) 5837-5839.
|
[44] |
T. Sato, H. Ozaki, Y. Hata, et al., Biochemistry 33(1994) 8641-8650.
|
|
|
|