|
|
Development of aspartic acid ligation for peptide cyclization derived from serine/threonine ligation |
Ci Xu, Jianchao Xu, Han Liu, Xuechen Li |
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China |
|
|
Guide Based on a mechanism analogous to the serine/threonine ligation, the aspartic acid ligation, which is facilitated by the γ-amino alcohol based ligation and oxidation, is developed and applied to the synthesis of cyclic peptides. The γ-hydroxyl group triggers the ring-chain tautomerization via a 6-endo-trig process, while the δ-hydroxyl group facilitates the oxidative cleavage of the vicinal diol to give carboxylic acid. |
|
Abstract Based on a mechanism analogous to the serine/threonine ligation, the aspartic acid ligation, which is facilitated by the γ-amino alcohol based ligation and oxidation, is developed and applied to the synthesis of cyclic peptides. The γ-hydroxyl group triggers the ring-chain tautomerization via a 6-endo-trig process, while the δ-hydroxyl group facilitates the oxidative cleavage of the vicinal diol to give carboxylic acid.
|
Received: 13 February 2018
|
Fund:This work was supported by the Research Grants Council (Nos. 17309616, C6009-15G) of Hong Kong, The National Science Foundation of China (Nos. 21672180, 91753101), the Area of Excellence Scheme of the University of Grants Committee of Hong Kong (No. AoE/P-705/16). |
Corresponding Authors:
Xuechen Li, xuechenl@hku.hk
E-mail: xuechenl@hku.hk
|
|
|
|
[1] |
Y.S. Ong, L. Gao, K.A. Kalesh, et al., Curr. Top. Med. Chem. 17(2017) 2302-2318.
|
[2] |
A.T. Bockus, C.M. McEwen, R.S. Lokey, Curr. Top. Med. Chem. 13(2013) 821-836.
|
[3] |
S.H. Joo, Biomol. Ther. 20(2012) 19-26.
|
[4] |
C.J. White, A.K. Yudin, Nat. Chem. 3(2011) 509-524.
|
[5] |
Z.M. Wu, S.Z. Liu, X.Z. Chen, et al., Chin. Chem. Lett. 27(2016) 1731-1739.
|
[6] |
G.K.T. Nguyen, C.T.T. Wong, J. Biochem. Chem. Sci. 2017(2017) 1-13.
|
[7] |
P.E. Dawson, T.W. Muir, I. Clark-Lewis, et al., Science 266(1994) 776-779.
|
[8] |
P.E. Dawson, S.B.H. Kent, Annu. Rev. Biochem. 69(2000) 923-960.
|
[9] |
G.M. Fang, Y.M. Li, F. Shen, et al., Angew. Chem. Int. Ed. 50(2011) 7645-7649.
|
[10] |
S. Tang, J.S. Zheng, K. Yang, et al., Acta Chim. Sin. 70(2012) 1471-1476.
|
[11] |
J.X. Wang, G.M. Fang, Y. He, et al., Angew. Chem. Int. Ed. 54(2015) 2194-2198.
|
[12] |
K. Jin, T. Li, H.Y. Chow, et al., Angew. Chem. Int. Ed. 56(2017) 14607-14611.
|
[13] |
C.F. Liu, J.P. Tam, J. Am. Chem. Soc. 116(1994) 4149-4153.
|
[14] |
P. Botti, T.D. Pallin, J.P. Tam, J. Am. Chem. Soc. 118(1996) 10018-10024.
|
[15] |
J.W. Bode, Acc. Chem. Res. 50(2017) 2104-2115.
|
[16] |
F. Rohrbacher, G. Deniau, A. Luther, et al., Chem. Sci. 6(2015) 4889-4896.
|
[17] |
T. Fukuzumi, L. Ju, J.W. Bode, Org. Biomol. Chem. 10(2012) 5837-5844.
|
[18] |
R. Kleineweischede, C.P.R. Hackenberger, Angew. Chem. Int. Ed. 47(2008) 5984-5988.
|
[19] |
C.L. Tung, C.T.T. Wong, X. Li, Org. Biomol. Chem. 13(2015) 6922-6926.
|
[20] |
D.Y. Jackson, J.P. Burnier, J.A. Wells, J. Am. Chem. Soc. 117(1995) 819-820.
|
[21] |
G.K.T. Nguyen, S. Wang, Y. Qiu, et al., Nat. Chem. Biol. 10(2014) 732-738.
|
[22] |
G.K.T. Nguyen, Y. Qiu, Y. Cao, et al., Nat. Protoc. 11(2016) 1977-1988.
|
[23] |
G.K.T. Nguyen, X. Hemu, J.P. Quek, et al., Angew. Chem. Int. Ed. 55(2016) 12802-12806.
|
[24] |
Z.M. Wu, S.Z. Liu, X.Z. Cheng, et al., Chin. Chem. Lett. 28(2017) 553-557.
|
[25] |
X. Li, H.Y. Lam, Y. Zhang, C.K. Chan, Org. Lett. 12(2010) 1724-1727.
|
[26] |
Y. Zhang, C. Xu, H.Y. Lam, et al., Proc. Natl. Acad. Sci. U. S. A. 110(2013) 6657-6662.
|
[27] |
C.T.T. Wong, T. Li, H.Y. Lam, et al., Front. Chem. 2(2014), doi:http://dx.doi.org/10.3389/fchem.2014.00028.
|
[28] |
C.L. Lee, X. Li, Curr. Opin. Chem. Biol. 22(2014) 108-114.
|
[29] |
C.L. Lee, X. Li, Sci. China Chem. 59(2016) 1061-1064.
|
[30] |
H. Liu, X. Li, Org. Biomol. Chem. 12(2014) 3768-3773.
|
[31] |
Y. Zhang, T. Li, X. Li, Org. Biomol. Chem. 11(2013) 5584-5587.
|
[32] |
C. Xu, H.Y. Lam, Y. Zhang, et al., Chem. Commun. 49(2013) 6200-6202.
|
[33] |
T. Li, H. Liu, X. Li, Org. Lett. 18(2016) 5944-5947.
|
[34] |
C.L. Lee, H. Liu, C.T.T. Wong, et al., J. Am. Chem. Soc. 138(2016) 10477-10484.
|
[35] |
C.L. Lee, H.Y. Lam, X. Li, Nat. Prod. Rep. 32(2015) 1274-1279.
|
[36] |
H.Y. Lam, Y. Zhang, H. Liu, et al., J. Am. Chem. Soc. 135(2013) 6272-6279.
|
[37] |
D. Lin, H.Y. Lam, W. Han, et al., Bioorg. Med. Chem. Lett. 27(2017) 456-459.
|
[38] |
K. Jin, I.H. Sam, K.H.L. Po, et al., Nat. Commun. 7(2016) 12394.
|
[39] |
K. Jin, K.H.L. Po, S. Wang, et al., Bioorg. Med. Chem. 25(2017) 4990-4995.
|
[40] |
C.T.T. Wong, H.Y. Lam, X. Li, Tetrahedron 70(2014) 7770-7773.
|
[41] |
C.T.T. Wong, H.Y. Lam, X. Li, Org. Biomol. Chem. 11(2013) 7616-7620.
|
[42] |
C.T.T. Wong, H.Y. Lam, T. Song, et al., Angew. Chem. Int. Ed. 52(2013) 10212-10215.
|
[43] |
J.F. Zhao, X.H. Zhang, Y.J. Ding, et al., Org. Lett. 15(2013) 5182-5185.
|
[44] |
T. Fukuyama, S.C. Lin, L. Li, J. Am. Chem. Soc. 112(1990) 7050-7051.
|
[45] |
Y. Yoshimura, C. Ohara, T. Imahori, et al., Bioorg. Med. Chem. 16(2008) 8273-8286.
|
|
|
|