|
|
Enzymatic clickable functionalization of peptides via computationally engineered peptide amidase |
Tong Zhua,b, Lu Songa,c, Ruifeng Lia,b, Bian Wua |
a CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
b University of Chinese Academy of Sciences, Beijing 100101, China;
c State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100101, China |
|
|
Guide The computationally engineered peptide amidase exhibits great promising potential in the C-terminal modification of peptides using prop-2-yn-1-amine (PYA) or prop-2-en-1-amine (PEA) as the nucleophile. Subsequently, modified peptides could be further functionalized via click reaction without elaborate isolation of the intermediate. |
|
Abstract Directed peptides C-terminal modification enabled by the engineered biomolecular catalyst-peptide amidase 12B has been achieved via computational protein engineering. The engineered enzyme exhibits great promising potential in the C-terminal modification of opioid peptides using prop-2-yn-1-amine (PYA) or prop-2-en-1-amine (PEA) as the nucleophile. A variety of opioid peptides could be readily functionalized at the C-terminal chain in high yield in a mild and selective manner. Notably, modified opioid peptides bearing alkynyl moiety could be further functionalized through well-established click reaction.
|
Received: 05 February 2018
|
Fund:This work is supported by the National Natural Science Foundation of China (No. 31601412), the 100 Talent Program grant and Biological Resources Service Network Initiative (No. ZSYS-012) and grant from the Chinese Academy of Sciences (No. SKT1604). |
Corresponding Authors:
Bian Wu, wub@im.ac.cn
E-mail: wub@im.ac.cn
|
|
|
|
[1] |
A. Kaspar, J.M. Reichert, Drug Discov. Today 18(2013) 807-817.
|
[2] |
W.X. Liu, R. Wang, Med. Res. Rev. 32(2012) 536-580.
|
[3] |
E.M. Sletten, C.R. Bertozzi, Angew. Chem. Int. Ed. 48(2009) 6974-6998.
|
[4] |
H. Noda, G. ErAs, J.W. Bode, J. Am. Chem. Soc. 136(2014) 5611-5614.
|
[5] |
M.E.B. Smith, F.F. Schumacher, C.P. Ryan, et al., J. Am. Chem. Soc. 132(2010) 1960-1965.
|
[6] |
A. Dondoni, Angew. Chem. Int. Ed. 47(2008) 8995-8997.
|
[7] |
Y.M. Li, Y.T. Li, M. Pan, et al., Angew. Chem. Int. Ed. 53(2014) 2198-2202.
|
[8] |
O. Boutureira, G.J.L. Bernardes, Chem. Rev. 115(2015) 2174-2195.
|
[9] |
L. Schmohl, D. Schwarzer, Curr. Opin. Chem. Biol. 22(2014) 122-128.
|
[10] |
Z. Wu, X. Guo, Z. Guo, Chem. Commun. 46(2010) 5773-5774.
|
[11] |
T. Sijbrandij, N. Cukkemane, K. Nazmi, E.C.I. Veerman, F.J. Bikker, Bioconjugate Chem. 24(2013) 828-831.
|
[12] |
X.L. Tan, M. Pan, Y. Zheng, et al., Chem. Sci. 8(2017) 6881-6887.
|
[13] |
M.P. Davis, Expert Opin. Drug Discov. 5(2010) 1007-1022.
|
[14] |
B.L. Kieffer, Trends Pharmacol. Sci. 20(1999) 19-26.
|
[15] |
Z.H. Gu, B. Wang, Z.Z. Kou, et al., Neurosignals 25(2017) 98-116.
|
[16] |
S. Martin-Schild, J.E. Zadina, A.A. Gerall, S. Vigh, A.J. Kastin, Peptides 18(1997) 1641-1649.
|
[17] |
C. Tömböly, A. Peter, G. Toth, Peptides 23(2002) 1573-1580.
|
[18] |
A. Janecka, R. Perlikowska, K. Gach, A. Wyrebska, J. Fichna, Curr. Pharm. Design 16(2010) 1126-1135.
|
[19] |
C.P. Guimaraes, M.D. Witte, C.S. Theile, et al., Nat. Protoc. 8(2013) 1787-1799.
|
[20] |
A. El Dahshan, S. Weik, J. Rademann, Org. Lett. 9(2007) 949-952.
|
[21] |
R. Schwyzer, Biochemistry 25(1986) 6335-6342.
|
[22] |
P. Cherkupally, G.A. Acosta, S. Ramesh, et al., Amino Acids 46(2014) 1827-1838.
|
[23] |
J.A. Fehrentz, M. Paris, A. Heitz, et al., J. Org. Chem. 62(1997) 6792-6796.
|
[24] |
L. Ju, J.W. Bode, Org. Biomol. Chem. 7(2009) 2259-2264.
|
[25] |
A. Lindqvist, S. Jönsson, M. Hammarlund-Udenaes, Mol. Pharm. 13(2016) 1258-1266.
|
[26] |
Y. Koda, M.D. Borgo, S.T. Wessling, et al., Bioorg. Med. Chem. 16(2008) 6286-6296.
|
[27] |
G. Zhang, S. Zheng, H. Liu, P.R. Chen, Chem. Soc. Rev. 44(2015) 3405-3417.
|
[28] |
B. Wu, H.J. Wijma, L. Song, et al., ACS Catal. 6(2016) 5405-5414.
|
[29] |
J. Hughes, T.W. Smith, H.W. Kosterlitz, et al., Nature 258(1975) 577-579.
|
[30] |
S. Udenfriend, D.L. Kilpatrick, Arch. Biochem. Biophys. 221(1983) 309-323.
|
[31] |
Y. Li, M.R. Lefever, D. Muthu, et al., Future Med. Chem. 4(2012) 205-226.
|
[32] |
M.S. Henry, L. Gendron, M.E. Tremblay, G. Drolet, Neural. Plast (2017) Article ID 1546125.
|
[33] |
D. Owczarek, D. Cibor, T. Mach, et al., Adv. Med. Sci. 56(2011) 158-164.
|
[34] |
J.E. Zadina, L. Hackler, L.J. Ge, A.J. Kastin, Nature 386(1997) 499-502.
|
[35] |
S. Martin-Schild, A.A. Gerall, A.J. Kastin, J.E. Zadina, Peptides 19(1998) 1783-1789.
|
[36] |
D.D. Nguyen, S.K. Johnson, F. Busetti, V.A. Solah, Crit. Rev. Food Sci. Nutr. 55(2015) 1955-1967.
|
[37] |
H. Teschemacher, G. Koch, V. Brantl, Biopolymers 43(1997) 99-117.
|
[38] |
C.M. Dundas, D. Demonte, S. Park, Appl. Microbiol. Biotechnol. 97(2013) 9343-9353.
|
[39] |
S. Li, L. Wang, F. Yu, et al., Chem. Sci. 8(2017) 2107-2114.
|
[40] |
L. Li, Z. Zhang, Molecules 21(2016) 1393-1415.
|
[41] |
B.L. Oliveira, Z. Guo, G.J.L. Bernardes, Chem. Soc. Rev. 46(2017) 4895-4950.
|
[42] |
A. Borrmann, S. Milles, T. Plass, et al., Chembiochem 13(2012) 2094-2099.
|
[43] |
T. Smyth, K. Petrova, N.M. Payton, et al., Bioconjugate Chem. 25(2014) 1777-1784.
|
|
|
|