|
|
Programmable pyrrole-imidazole polyamides: A potent tool for DNA targeting |
Chunlei Wu, Wei Wang, Lijing Fang, Wu Su |
Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
|
|
Guide Pyrrole-imidazole (Py-Im) polyamides are a class of programmable minor-groove binders that recognize pre-determined DNA double helixes with high affinity and specificity. This review summarized the recent advances of Py-Im polyamides from their synthesis to applications via various modifications at the molecular level. |
|
Abstract Hairpin pyrrole-imidazole (Py-Im) polyamides are a class of programmable minor-groove binders that recognize pre-determined DNA double helixes with high affinity and specificity. They are capable of regulating gene expression by modulating the activity of transcription factors. To date, Py-Im polyamides have been successfully applied as a potent tool to disturb DNA functions and considered as a group of promising candidates for the clinical applications. Herein, this review will focus on summarizing the recent advances of Py-Im polyamides from their synthesis to applications via various modifications at the molecular level.
|
Received: 09 April 2018
|
Fund:This work was supported by the Shenzhen Sciences & Technology Innovation Council (Nos. GJHS20170314154409805, GJHS20160331195142827, GJHS20150417103343317, JCYJ201708 1815358196, JCYJ20150401150223649 and JCYJ20170413165 916608) and the National Natural Science Foundation of China (Nos. 21672254, 21778068, 21502219 and 21432003). |
Corresponding Authors:
Lijing Fang, lj.fang@siat.ac.cn;Wu Su, wu.su@siat.ac.cn
E-mail: lj.fang@siat.ac.cn;wu.su@siat.ac.cn
|
|
|
|
[1] |
L.H. Hurley, Nat. Rev. Cancer 2(2002) 188-200.
|
[2] |
A. Ali, S. Bhattacharya, Bioorg. Med. Chem. 22(2014) 4506-4521.
|
[3] |
P.B. Dervan, B.S. Edelson, Curr. Opin. Struct. Biol. 13(2003) 284-299.
|
[4] |
M.S. Blackledge, C. Melander, Bioorg. Med. Chem. 21(2013) 6101-6114.
|
[5] |
P.B. Dervan, R.W. Burli, Curr. Opin. Chem. Biol. 3(1999) 688-693.
|
[6] |
C. Melander, R. Burnett, J.M. Gottesfeld, J. Biotechnol. 112(2004) 195-220.
|
[7] |
P.B. Dervan, R.M. Doss, M.A. Marques, Curr. Med. Chem. Anti-Cancer Agents 5(2005) 373-387.
|
[8] |
E.E. Baird, P.B. Dervan, J. Am. Chem. Soc. 118(1996) 6141-6146.
|
[9] |
N.R. Wurtz, J.M. Turner, E.E. Baird, et al., Org. Lett. 3(2001) 1201-1203.
|
[10] |
J.M. Belitsky, D.H. Nguyen, N.R. Wurtz, et al., Bioorg. Med. Chem. 10(2002) 2767-2774.
|
[11] |
D.A. Harki, N. Satyamurthy, D.B. Stout, et al., Proc. Natl. Acad. Sci. U. S. A. 105(2008) 13039-13044.
|
[12] |
D.M. Chenoweth, D.A. Harki, P.B. Dervan, J. Am. Chem. Soc. 131(2009) 7175-7181.
|
[13] |
J.W. Puckett, J.T. Green, P.B. Dervan, Org. Lett. 14(2012) 2774-2777.
|
[14] |
A.J. Fallows, I. Singh, R. Dondi, et al., Org. Lett. 16(2014) 4654-4657.
|
[15] |
W. Su, S.J. Gray, R. Dondi, et al., Org. Lett. 11(2009) 3910-3913.
|
[16] |
L.J. Fang, G.Y. Yao, Z.Y. Pan, et al., Org. Lett. 17(2015) 158-161.
|
[17] |
Y. Kawamoto, T. Bando, F. Kamada, et al., J. Am. Chem. Soc. 135(2013) 16468-16477.
|
[18] |
M. Yamamoto, T. Bando, Y. Kawamoto, et al., Bioconjugate Chem. 25(2014) 552-559.
|
[19] |
Y. Kawamoto, A. Sasaki, K. Hashiya, et al., Chem. Sci. 6(2015) 2307-2312.
|
[20] |
Y. Kawamoto, A. Sasaki, A. Chandran, et al., J. Am. Chem. Soc. 138(2016) 14100-14107.
|
[21] |
M. Mrksich, M.E. Parks, P.B. Dervan, J. Am. Chem. Soc. 116(1994) 7983-7988.
|
[22] |
C.S. Jacobs, P.B. Dervan, J. Med. Chem. 52(2009) 7380-7388.
|
[23] |
F. Yang, N.G. Nickols, B.C. Li, et al., J. Med. Chem. 56(2013) 7449-7457.
|
[24] |
J.A. Raskatov, J.O. Szablowski, P.B. Dervan, J. Med. Chem. 57(2014) 8471-8476.
|
[25] |
S. Nishijima, K.-i. Shinohara, T. Bando, et al., Bioorg. Med. Chem. 18(2010) 978-983.
|
[26] |
B.B. Liu, S. Wang, K. Aston, et al., Org. Biomol. Chem. 15(2017) 9880-9888.
|
[27] |
S. Wang, K. Aston, K.J. Koeller, et al., Org. Biomol. Chem. 12(2014) 7523-7536.
|
[28] |
J.L. Meier, A.S. Yu, I. Korf, et al., J. Am. Chem. Soc. 134(2012) 17814-17822.
|
[29] |
N. Fukuda, T. Ueno, Y. Tahira, et al., J. Am. Soc. Nephrol. 17(2006) 422-432.
|
[30] |
J.A. Raskatov, J.L. Meier, J.W. Puckett, et al., Proc. Natl. Acad. Sci. U. S. A. 109(2012) 1023-1028.
|
[31] |
N.G. Nickols, P.B. Dervan, Proc. Natl. Acad. Sci. U. S. A. 104(2007) 10418-10423.
|
[32] |
X.F. Wang, H. Nagase, T. Watanabe, et al., Cancer Sci. 101(2010) 759-766.
|
[33] |
J. Syed, G.N. Pandian, S. Sato, et al., Chem. Biol. 21(2014) 1370-1380.
|
[34] |
N.G. Nickols, J.O. Szablowski, A.E. Hargrove, et al., Mol. Cancer Ther. 12(2013) 675-684.
|
[35] |
A. Tsunemi, T. Ueno, N. Fukuda, et al., J. Mol. Med. 92(2014) 509-521.
|
[36] |
K. Hayatigolkhatmi, G. Padroni, W. Su, et al., Blood Cells Mol. Dis. 69(2018) 119-122.
|
[37] |
F. Yang, N.G. Nickols, B.C. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 110(2013) 1863-1868.
|
[38] |
A.A. Kurmis, F. Yang, T.R. Welch, et al., Cancer Res. 77(2017) 2207-2212.
|
[39] |
D. Obinata, K. Takayama, K. Fujiwara, et al., Oncogene 35(2016) 6350-6358.
|
[40] |
L. Xu, W. Wang, D. Gotte, et al., Proc. Natl. Acad. Sci. U. S. A. 113(2016) 12426-12431.
|
[41] |
J. Neumann, E. Zeindl-Eberhart, T. Kirchner, et al., Pathol. Res. Pract. 205(2009) 858-862.
|
[42] |
R.D. Taylor, S. Asamitsu, T. Takenaka, et al., Chem. Eur. J. 20(2014) 1310-1317.
|
[43] |
K. Hiraoka, T. Inoue, R.D. Taylor, et al., Nat. Commun. 6(2015) 6706.
|
[44] |
W. Su, C.R. Bagshaw, G.A. Burley, Sci. Rep. 3(2013) 1883.
|
[45] |
W. Su, M. Schuster, C.R. Bagshaw, et al., Angew. Chem. Int. Ed. 50(2011) 2712-2715.
|
[46] |
T. Hidaka, G.N. Pandian, J. Taniguchi, et al., J. Am. Chem. Soc. 139(2017) 8444-8447.
|
[47] |
Z.T. Yu, C.X. Guo, Y.L. Wei, et al., J. Am. Chem. Soc. 140(2018) 2426-2429.
|
[48] |
K. Liu, L.J. Fang, H.Y. Sun, et al., Mol. Cancer Ther. 17(2018) 988-1002.
|
[49] |
S.D. Taverna, H.T. Li, A.J. Ruthenburg, et al., Nat. Struct. Mol. Biol. 14(2007) 1025-1040.
|
[50] |
G.N. Pandian, H. Sugiyama, Biotechnol. J. 7(2012) 798-809.
|
[51] |
G.N. Pandian, Y. Nakano, S. Sato, et al., Sci. Rep. 2(2012) 544.
|
[52] |
L. Han, G.N. Pandian, S. Junetha, et al., Angew. Chem. Int. Ed. 52(2013) 13410-13413.
|
[53] |
G.N. Pandian, J. Taniguchi, S. Junetha, et al., Sci. Rep. 4(2014) 3843.
|
[54] |
L. Han, G.N. Pandian, A. Chandran, et al., Angew. Chem. Int. Ed. 54(2015) 8700-8703.
|
[55] |
G.S. Erwin, M.P. Grieshop, D. Bhimsaria, et al., Proc. Natl. Acad. Sci. U. S. A. 113(2016) E7418-E7427.
|
[56] |
K. Maeshima, S. Janssen, U.K. Laemmli, Embo J. 20(2001) 3218-3228.
|
[57] |
S. Sasaki, T. Bando, M. Minoshima, et al., J. Am. Chem. Soc. 128(2006) 12162-12168.
|
[58] |
R. Takahashi, T. Bando, H. Sugiyama, Bioorg. Med. Chem. 11(2003) 2503-2509.
|
[59] |
G. Kashiwazaki, T. Bando, K.I. Shinohara, et al., Bioorg. Med. Chem. 17(2009) 1393-1397.
|
[60] |
A. Hirata, K. Nokihara, Y. Kawamoto, et al., J. Am. Chem. Soc. 136(2014) 11546-11554.
|
[61] |
A. Sasaki, S. Ide, Y. Kawamoto, et al., Sci. Rep. 6(2016) 29261.
|
[62] |
T.L. Schmidt, C.K. Nandi, G. Rasched, et al., Angew. Chem. Int. Ed. 46(2007) 4382-4384.
|
[63] |
T.L. Schmidt, A. Heckel, Small 5(2009) 1517-1520.
|
[64] |
T.L. Schmidt, A. Heckel, Nano Lett. 11(2011) 1739-1742.
|
[65] |
Z. Krpetic, I. Singh, W. Su, et al., J. Am. Chem. Soc. 134(2012) 8356-8359.
|
[66] |
S. Patel, D. Jung, P.T. Yin, et al., ACS Nano 8(2014) 8959-8967.
|
[67] |
S. Patel, P.T. Yin, H. Sugiyama, et al., ACS Nano 9(2015) 6909-6917.
|
[68] |
S. Patel, T. Pongkulapa, P.T. Yin, et al., J. Am. Chem. Soc. 137(2015) 4598-4601.
|
[69] |
H. Matsuda, N. Fukuda, T. Ueno, et al., Kidney Int. 79(2011) 46-56.
|
|
|
|