|
|
Different stapling-based peptide drug design: Mimicking α-helix as inhibitors of protein-protein interaction |
Xiang Li, Yan Zou, Hong-Gang Hu |
School of Pharmacy, Second Military Medical University, Shanghai 200433, China |
|
|
Guide We category and analyze key examples of various peptide stapling strategies based on different cross-links aligned on the side chain of peptides mainly in the last three years. |
|
Abstract Peptide stapling strategy has been proven a promising solution in addressing two major pharmacological hurdles, proteolytic stability and membrane permeability, for small peptides as therapeutics. This stapling peptides feature a covalent cross-link of side chains, thus effectively mimicking α-helix as inhibitors of protein-protein interactions. In this review, we category and analyze key examples of various peptide stapling strategies based on different cross-links aligned on the side chain of peptides mainly in the last three years.
|
Received: 07 December 2017
|
Corresponding Authors:
Hong-Gang Hu, hhu66@smmu.edu.cn
E-mail: hhu66@smmu.edu.cn
|
|
|
|
[1] |
L.G. Milroy, T.N. Grossmann, S. Hennig, L. Brunsveld, C. Ottmann, Chem. Rev. 114(2014) 4695-4748.
|
[2] |
N. London, B. Raveh, D. Movshovitz-Attias, O. Schueler-Furman, Proteins Struct. Funct. Bioinf. 78(2010) 3140-3149.
|
[3] |
I.S. Moreira, P.A. Fernandes, M.J. Ramos, Proteins Struct. Funct. Bioinf. 68(2007) 803-812.
|
[4] |
J.M. Mason, Future Med. Chem. 2(2010) 1813-1822.
|
[5] |
O. Keskin, A. Gursoy, B. Ma, R. Nussinov, Chem. Rev. 108(2008) 1225-1244.
|
[6] |
V. Azzarito, K. Long, N.S. Murphy, A.J. Wilson, Nat. Chem. 5(2013) 161-173.
|
[7] |
D.S. Nielsen, N.E. Shepherd, W. Xu, et al., Chem. Rev. 117(2017) 8094-8128.
|
[8] |
M. Yang, K. Sunderland, C. Mao, Chem. Rev. 117(2017) 10377-10402.
|
[9] |
K.R. Mahendran, A. Niitsu, L. Kong, et al., Nat. Chem. 9(2017) 411-419.
|
[10] |
A.N. Zelikin, C. Ehrhardt, A.M. Healy, Nat. Chem. 8(2016) 997-1007.
|
[11] |
H.M. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res. 28(2000) 235-242.
|
[12] |
B.N. Bullock, A.L. Jochim, P.S. Arora, J. Am. Chem. Soc. 133(2011) 14220-14223.
|
[13] |
O. Koch, J. Cole, P. Block, G. Klebe, J. Chem. Inf. Model. 49(2009) 2388-2402.
|
[14] |
S. Marqusee, R.L. Baldwin, Proc. Natl. Acad. Sci. U. S. A. 84(1987) 8898-8902.
|
[15] |
M. Chorev, E. Roubini, R.L. McKee, et al., Biochemistry 30(1991) 5968-5974.
|
[16] |
D.Y. Jackson, D.S. King, J. Chmielewski, S. Singh, P.G. Schultz, J. Am. Chem. Soc. 113(1991) 9391-9392.
|
[17] |
A.M. Felix, E.P. Heimer, C.T. Wang, et al., Int. J. Pept. Protein Res. 32(1988) 441-454.
|
[18] |
C.E. Schafmeister, J. Po, G.L. Verdine, J. Am. Chem. Soc. 122(2000) 5891-5892.
|
[19] |
Y.H. Lau, P. de Andrade, Y. Wu, D.R. Spring, Chem. Soc. Rev. 44(2015) 91-102.
|
[20] |
C.J. White, A.K. Yudin, Nat. Chem. 3(2011) 509-524.
|
[21] |
H.E. Blackwell, R.H. Grubbs, Angew. Chem. Int. Ed. 37(1998) 3281-3284.
|
[22] |
R.E. Moellering, M. Cornejo, T.N. Davis, et al., Nature 462(2009) 182-188.
|
[23] |
L.D. Walensky, A.L. Kung, I. Escher, et al., Science 305(2004) 1466-1470.
|
[24] |
S. Baek, P.S. Kutchukian, G.L. Verdine, et al., J. Am. Chem. Soc. 134(2012) 103-106.
|
[25] |
F. Bernal, A.F. Tyler, S.J. Korsmeyer, L.D. Walensky, G.L. Verdine, J. Am. Chem. Soc. 129(2007) 2456-2457.
|
[26] |
P.S. Kutchukian, J.S. Yang, G.L. Verdine, E.I. Shakhnovich, J. Am. Chem. Soc. 131(2009) 4622-4627.
|
[27] |
Y.S. Chang, B. Graves, V. Guerlavais, et al., Proc. Natl. Acad. Sci. U. S. A. 110(2013) E3445-E3454.
|
[28] |
M. Wade, Y.C. Li, G.M. Wahl, Nat. Rev. Cancer 13(2013) 83-96.
|
[29] |
F. Meric-Bernstam, M.N. Saleh, J.R. Infante, et al., J. Clin. Oncol. 35(2017) 2505.
|
[30] |
T.E. Speltz, S.W. Fanning, C.G. Mayne, et al., Angew. Chem. Int. Ed. 55(2016) 4252-4255.
|
[31] |
J.A. Miles, D.J. Yeo, P. Rowell, et al., Chem. Sci. 7(2016) 3694-3702.
|
[32] |
D.J. Yeo, S.L. Warriner, A.J. Wilson, Chem. Commun. 49(2013) 9131-9133.
|
[33] |
C.H. Douse, S.J. Maas, J.C. Thomas, et al., ACS Chem. Biol. 9(2014) 2204-2209.
|
[34] |
Y. Wu, Y.H. Li, X. Li, et al., Chem. Sci. 8(2017) 7368-7373.
|
[35] |
M. Oba, M. Kunitake, T. Kato, A. Ueda, M. Tanaka, Bioconj. Chem. 28(2017) 1801-1806.
|
[36] |
S.L. Mangold, R.H. Grubbs, Chem. Sci. 6(2015) 4561-4569.
|
[37] |
C. Hoppmann, R. Kuhne, M. Beyermann, Beilstein J. Org. Chem. 8(2012) 884-889.
|
[38] |
A.A. Aimetti, R.K. Shoemaker, C.C. Lin, K.S. Anseth, Chem. Commun. 46(2010) 4061-4063.
|
[39] |
Y. Wang, D.H.C. Chou, Angew. Chem. Int. Ed. 54(2015) 10931-10934.
|
[40] |
Y. Wang, B.J. Bruno, S. Cornillie, et al., Chem. Eur. J. 23(2017) 7087-7092.
|
[41] |
K. Hu, H. Geng, Q. Zhang, et al., Angew. Chem. Int. Ed. 55(2016) 8013-8017.
|
[42] |
K. Hu, C. Sun, M. Yu, et al., Bioconj. Chem. 28(2017) 1537-1543.
|
[43] |
K. Hu, C. Sun, Z. Li, Bioconj. Chem. 28(2017) 2001-2007.
|
[44] |
K. Hu, C. Sun, D. Yang, et al., Chem. Commun. 53(2017) 6728-6731.
|
[45] |
Y. Tian, J. Li, H. Zhao, et al., Chem. Sci. 7(2016) 3325-3330.
|
[46] |
A.M. Spokoyny, Y. Zou, J.J. Ling, et al., J. Am. Chem. Soc. 135(2013) 5946-5949.
|
[47] |
E.V. Vinogradova, C. Zhang, A.M. Spokoyny, B.L. Pentelute, S.L. Buchwald, Nature 526(2015) 687-691.
|
[48] |
A.J. Rojas, C. Zhang, E.V. Vinogradova, et al., Chem. Sci. 8(2017) 4257-4263.
|
[49] |
H. Jo, N. Meinhardt, Y. Wu, et al., J. Am. Chem. Soc. 134(2012) 17704-17713.
|
[50] |
P. Diderich, D. Bertoldo, P. Dessen, et al., ACS Chem. Biol. 11(2016) 1422-1427.
|
[51] |
L. Peraro, Z. Zou, K.M. Makwana, et al., J. Am. Chem. Soc. 139(2017) 7792-7802.
|
[52] |
C.M. Grison, G.M. Burslem, J.A. Miles, et al., Chem. Sci. 8(2017) 5166-5171.
|
[53] |
S.P. Brown, A.B. Smith, J. Am. Chem. Soc. 137(2015) 4034-4037.
|
[54] |
G. Lautrette, F. Touti, H.G. Lee, P. Dai, B.L. Pentelute, J. Am. Chem. Soc. 138(2016) 8340-8343.
|
[55] |
C.M.B.K. Kourra, N. Cramer, Chem. Sci. 7(2016) 7007-7012.
|
[56] |
M. Scrima, A. Le Chevalier-Isaad, P. Rovero, et al., Eur. J. Org. Chem. 2010(2010) 446-457.
|
[57] |
Y.H. Lau, P. de Andrade, N. Skold, et al., Org. Biomol. Chem. 12(2014) 4074-4077.
|
[58] |
Y.H. Lau, P. de Andrade, S.T. Quah, et al., Chem. Sci. 5(2014) 1804-1809.
|
[59] |
Y.H. Lau, Y. Wu, P. de Andrade, W.R.J.D. Galloway, D.R. Spring, Nat. Protoc. 10(2015) 585-594.
|
[60] |
M.M. Wiedmann, Y.S. Tan, Y. Wu, et al., Angew. Chem. Int. Ed. 56(2017) 524-529.
|
[61] |
Y. Wu, F. Villa, J. Maman, et al., Angew. Chem. Int. Ed. 56(2017) 12866-12872.
|
[62] |
Y.H. Lau, Y. Wu, M. Rossmann, et al., Angew. Chem. Int. Ed. 54(2015) 15410-15413.
|
[63] |
W. Xu, Y.H. Lau, G. Fischer, et al., J. Am. Chem. Soc. 139(2017) 2245-2256.
|
[64] |
S. Das, A. Nag, J. Liang, et al., Angew. Chem. Int. Ed. 54(2015) 13219-13224.
|
[65] |
J. Yamaguchi, A.D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 51(2012) 8960-9009.
|
[66] |
A.F.M. Noisier, M.A. Brimble, Chem. Rev. 114(2014) 8775-8806.
|
[67] |
L. Mendive-Tapia, S. Preciado, J. Garcia, et al., Nat. Commun. 6(2015) 7160.
|
[68] |
Y. Zhu, M. Bauer, L. Ackermann, Chem. Eur. J. 21(2015) 9980-9983.
|
[69] |
T.J. Osberger, D.C. Rogness, J.T. Kohrt, A.F. Stepan, M.C. White, Nature 537(2016) 214-219.
|
[70] |
A.F.M. Noisier, J. Garcia, I.A. IonuU, F. Albericio, Angew. Chem. Int. Ed. 56(2017) 314-318.
|
[71] |
J. Tang, Y. He, H. Chen, W. Sheng, H. Wang, Chem. Sci. 8(2017) 4565-4570.
|
[72] |
H.K. Cui, Y. Guo, Y. He, et al., Angew. Chem. Int. Ed. 52(2013) 9558-9562.
|
[73] |
Y. Guo, D.M. Sun, F.L. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 14276-14281.
|
[74] |
F.L. Wang, Y. Guo, S.J. Li, et al., Org. Biomol. Chem. 13(2015) 6286-6290.
|
[1] |
Jing-Jing Du, Ling-Ming Xin, Ze Lei, Shi-Yao Zou, Wen-Bo Xu, Chang-Wei Wang, Lian Zhang, Xiao-Fei Gao, Jun Guo. Glycopeptide ligation via direct aminolysis of selenoester[J]. CCL, 2018, 29(07): 1127-1130. |
|
|
|
|