|
|
A mini-review and perspective on multicyclic peptide mimics of antibodies |
Weidong Liu, Chuanliu Wu |
Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China |
|
|
Guide This review gave a brief introduction on recent development in monocyclic and multicyclic peptide mimics of antibodies and provides a perspective on screening and design of multicyclic peptide mimics of antibodies in the future. |
|
Abstract Affinity reagents are important tools in the biological sciences for understanding biological processes and for studying protein expression, localization and interactions. However, traditional affinity reagents such as antibodies (and their fragments) and non-immunoglobulin (non-Ig) scaffold binders, usually suffer from problems of poor cellular uptake efficiency, high production cost, and low structural stability. This leads to rapid development of small antibody-like affinity reagents such as scaffold-free cyclic and multicyclic peptides, which usually have 5-30 amino acid residues, thus lying between non-Ig scaffolds and small molecules in size. In this mini-review, we highlight the recent development in mono-and multi-cyclic peptide mimics of antibodies, including cyclic peptide affinity reagents that have been developed for use in antibody-like applications, novel synthetic strategies for multicyclic peptides, and promising peptide library screening platforms. We also provide a perspective on the future development in multicyclic peptide mimics of antibodies.
|
Received: 09 February 2018
|
Fund:We would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 21475109), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13036), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521004). |
Corresponding Authors:
Chuanliu Wu, chlwu@xmu.edu.cn
E-mail: chlwu@xmu.edu.cn
|
|
|
|
[1] |
A. Bradbury, A. Pluckthun, Nature 518(2015) 27-29.
|
[2] |
M. Baker, Nature 521(2015) 274-276.
|
[3] |
J. Bordeaux, A.W. Welsh, S. Agarwal, et al., Biotechniques 48(2010) 197-209.
|
[4] |
A.L.J. Marschall, S. Dubel, T. Boldicke, Mabs 7(2015) 1010-1035.
|
[5] |
M. Akishiba, T. Takeuchi, Y. Kawaguchi, et al., Nat. Chem. 9(2017) 751-761.
|
[6] |
P. Holliger, P.J. Hudson, Nat. Biotechnol. 23(2005) 1126-1136.
|
[7] |
H.K. Binz, P. Amstutz, A. Pluckthun, Nat. Biotechnol. 23(2005) 1257-1268.
|
[8] |
J. Lofblom, F.Y. Frejd, S. Stahl, Curr. Opin. Biotech. 22(2011) 843-848.
|
[9] |
T. Wurch, A. Pierre, S. Depil, Trends Biotechnol. 30(2012) 575-582.
|
[10] |
K. Skrlec, B. Strukelj, A. Berlec, Trends Biotechnol. 33(2015) 408-418.
|
[11] |
C. Tiede, R. Bedford, S.J. Heseltine, et al., Elife 6(2017) e24903.
|
[12] |
C.J. White, A.K. Yudin, Nat. Chem. 3(2011) 509-524.
|
[13] |
C. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 5(2009) 502-507.
|
[14] |
Y. Hamuro, M.C. Calama, H.S. Park, A.D. Hamilton, Angew. Chem. Int. Ed. 36(1997) 2680-2683.
|
[15] |
H.K. Cui, Y. Guo, Y. He, et al., Angew. Chem. Int. Ed. 52(2013) 9558-9562.
|
[16] |
K. Hu, H. Geng, Q.Z. Zhang, et al., Angew. Chem. Int. Ed. 55(2016) 8013-8017.
|
[17] |
T.A. Hill, N.E. Shepherd, F. Diness, D.P. Fairlie, Angew. Chem. Int. Ed. 53(2014) 13020-13041.
|
[18] |
R.U. Kadam, J. Juraszek, B. Brandenburg, et al., Science 358(2017) 496-502.
|
[19] |
T.A. Whitehead, Science 358(2017) 450-451.
|
[20] |
M. Favre, K. Moehle, L.Y. Jiang, B. Pfeiffer, J.A. Robinson, J. Am. Chem. Soc. 121(1999) 2679-2685.
|
[21] |
W.V. Williams, T. Kieberemmons, J. Vonfeldt, M.I. Greene, D.B. Weiner, J. Biol. Chem. 266(1991) 5182-5190.
|
[22] |
S.Y. Chen, I.R. Rebollo, S.A. Buth, et al., J. Am. Chem. Soc. 135(2013) 6562-6569.
|
[23] |
M.J. Feige, L.M. Hendershot, J. Buchner, Trends Biochem. Sci. 35(2010) 189-198.
|
[24] |
K.E. Tiller, P.M. Tessier, Annu. Rev. Biomed. Eng. 17(2015) 191-216.
|
[25] |
I.R. Rebollo, C. Heinis, Methods 60(2013) 46-54.
|
[26] |
R. Maini, S. Umemoto, H. Suga, Curr. Opin. Chem. Biol. 34(2016) 44-52.
|
[27] |
K. Deyle, X.D. Kong, C. Heinis, Acc. Chem. Res. 50(2017) 1866-1874.
|
[28] |
J. Wilbs, S.J. Middendorp, C. Heinis, ChemBioChem 17(2016) 2299-2303.
|
[29] |
V. Baeriswyl, H. Rapley, L. Pollaro, et al., ChemMedChem 7(2012) 1173-1176.
|
[30] |
P. Timmerman, J. Beld, W.C. Puijk, R.H. Meloen, ChemBioChem 6(2005) 821-824.
|
[31] |
S.Y. Chen, D. Bertoldo, A. Angelini, F. Pojer, C. Heinis, Angew. Chem. Int. Ed. 53(2014) 1602-1606.
|
[32] |
C.E. Schafmeister, J. Po, G.L. Verdine, J. Am. Chem. Soc. 122(2000) 5891-5892.
|
[33] |
L. Mendive-Tapia, S. Preciado, J. Garcia, et al., Nat. Commun. 6(2015) 7160.
|
[34] |
Y.H. Lau, Y.T. Wu, M. Rossmann, et al., Angew. Chem. Int. Ed. 54(2015) 15410-15413.
|
[35] |
G.J. Hilinski, Y.W. Kim, J. Hong, et al., J. Am. Chem. Soc.136(2014) 12314-12322.
|
[36] |
H. Jo, N. Meinhardt, Y.B. Wu, et al., J. Am. Chem. Soc. 134(2012) 17704-17713.
|
[37] |
Y.X. Wang, D.H.C. Chou, Angew. Chem. Int. Ed. 54(2015) 10931-10934.
|
[38] |
C.M.B.K. Kourra, N. Cramer, Chem. Sci. 7(2016) 7007-7012.
|
[39] |
K. Chua, E. Fung, E.D. Micewicz, et al., Angew. Chem. Int. Ed. 57(2018) 501-505.
|
[40] |
W.D. Liu, Y.W. Zheng, X.D. Kong, et al., Angew. Chem. Int. Ed. 56(2017) 4458-4463.
|
[41] |
J.H. Wang, M.R. Zha, Q.R. Fei, et al., Chem. Eur. J. 23(2017) 15150-15155.
|
[42] |
A.M. Davis, A.T. Plowright, E. Valeur, Nat. Rev. Drug Discov. 16(2017) 681-698.
|
[43] |
A.R.M. Bradbury, S. Sidhu, S. Dubel, J. McCafferty, Nat. Biotechnol. 29(2011) 245-254.
|
[44] |
C. Heinis, G. Winter, Curr. Opin. Chem. Biol. 26(2015) 89-98.
|
[45] |
K.A. Noren, C.J. Noren, Methods 23(2001) 169-178.
|
[46] |
A. Galan, L. Comor, A. Horvatic, et al., Mol. Biosyst. 12(2016) 2342-2358.
|
[47] |
Y. Yamagishi, I. Shoji, S. Miyagawa, et al., Chem. Biol. 18(2011) 1562-1570.
|
[48] |
B. Owens, Nat. Biotechnol. 35(2017) 602-603.
|
[49] |
M.L. Azoitei, B.E. Correia, Y.E.A. Ban, et al., Science 334(2011) 373-376.
|
[50] |
G. Bhardwaj, V.K. Mulligan, C.D. Bahl, et al., Nature 538(2016) 329-335.
|
[51] |
A. Chevalier, D.A. Silva, G.J. Rocklin, et al., Nature 550(2017) 74-79.
|
[52] |
S.C. Penchala, M.R. Miller, A. Pal, et al., Nat. Chem. Biol. 11(2015) 793-798.
|
[53] |
C. Rader, Nature 518(2015) 38-39.
|
|
|
|