|
|
Synthesis of Ras proteins and their application in biofunctional studies |
Jun Hu, Pengcheng Zhu, Yanmei Li, Yongxiang Chen |
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China |
|
|
Guide We summarized the developed strategies including chemical total synthesis, biosynthesis and semi-synthesis for producing Ras proteins with modification and their application in biological studies. |
|
Abstract Approximately 30% of human cancers are associated with RAS mutation. Ras proteins on the plasma membrane regulate a plenty of important cellular processes. The post-translational modifications (PTMs) of Ras proteins like lipidation and methylation are crucial for their correct cellular localization and biological function. Hence, obtaining Ras proteins with different kinds of modifications is the necessary prerequisite to investigate their biological properties at molecular level. In this review, we mainly summarize the developed strategies including chemical total synthesis, biosynthesis and semi-synthesis for producing Ras proteins with modifications and their application in biological studies.
|
Received: 23 April 2018
|
Fund:We are grateful to the National Natural Science Foundation of China (Nos. 21672125, 91753122). |
Corresponding Authors:
Yongxiang Chen, chen-yx@mail.tsinghua.edu.cn
E-mail: chen-yx@mail.tsinghua.edu.cn
|
|
|
|
[1] |
Y. Pylayeva-Gupta, E. Grabocka, D. Bar-Sagi, Nat. Rev. Cancer 11(2011) 761-774.
|
[2] |
I.A. Prior, P.D. Lewis, C. Mattos, Cancer Res. 72(2012) 2457-2467.
|
[3] |
G. Triola, H. Waldmann, C. Hedberg, ACS Chem. Biol. 7(2012) 87-99.
|
[4] |
I.M. Ahearn, K. Haigis, D. Bar-Sagi, M.R. Philips, Nat. Rev. Mol. Cell Biol. 13(2011) 39-51.
|
[5] |
H. van Hattum, H. Waldmann, Chem. Biol. 21(2014) 1185-1195.
|
[6] |
R. Nussinov, C.J. Tsai, H. Jang, Cancer Res. 78(2018) 593-602.
|
[7] |
J. Omerovic, A.J. Laude, I.A. Prior, Cell Mol. Life Sci. 64(2007) 2575-2589.
|
[8] |
A.D. Cox, C.J. Der, Small GTPases 1(2010) 2-27.
|
[9] |
A.D. Cox, S.W. Fesik, A.C. Kimmelman, J. Luo, C.J. Der, Nat. Rev. Drug Discov. 13(2014) 828-851.
|
[10] |
A.T. Baines, D. Xu, C.J. Der, Future Med. Chem. 3(2011) 1787-1808.
|
[11] |
J. John, H. Rensland, I. Schlichting, et al., J. Biol. Chem. 268(1993) 923-929.
|
[12] |
I. Becher, M.M. Savitski, M.F. Savitski, et al., ACS Chem. Biol. 8(2013) 599-607.
|
[13] |
P.M. Cromm, J. Spiegel, T.N. Grossmann, H. Waldmann, Angew. Chem. Int. Ed. Engl. 54(2015) 13516-13537.
|
[14] |
J.M. Bergman, M.T. Abrams, J.P. Davide, et al., Bioorg. Med. Chem. Lett.11(2001) 1411-1415.
|
[15] |
N.M. Appels, J.H. Beijnen, J.H. Schellens, Oncologist 10(2005) 565-578.
|
[16] |
A.D. Cox, C.J. Der, M.R. Philips, Clin. Cancer Res. 21(2015) 1819-1827.
|
[17] |
H. Ledford, Nature 520(2015) 278-280.
|
[18] |
M. Gross, R.W. Sweet, G. Sathe, et al., Mol. Cell Biol. 5(1985) 1015-1024.
|
[19] |
P.N. Lowe, M.J. Page, S. Bradley, et al., J. Biol. Chem. 266(1991) 1672-1678.
|
[20] |
T. Yamashita, K. Yamamoto, et al., J. Biol. Chem. 263(1988) 17181-17188.
|
[21] |
P.E. Dawson, T.W. Muir, I. Clark-Lewis, S.B. Kent, Science 266(1994) 776-779.
|
[22] |
T.W. Muir, D. Sondhi, P.A. Cole, Proc. Natl. Acad. Sci. U. S. A. 95(1998) 6705-6710.
|
[23] |
H. Li, S. Dong, Sci. China Chem. 60(2016) 201-213.
|
[24] |
X. Li, H.Y. Lam, Y. Zhang, C.K. Chan, Org. Lett. 12(2010) 1724-1727.
|
[25] |
Y. Zhang, C. Xu, H.Y. Lam, C.L. Lee, X. Li, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 6657-6662.
|
[26] |
C.L. Lee, H. Liu, C.T. Wong, H.Y. Chow, X. Li, J. Am. Chem. Soc.138(2016) 10477-10484.
|
[27] |
C.L. Lee, X. Li, Sci. China Chem. 59(2016) 1061-1064.
|
[28] |
C. Xu, J. Xu, H. Liu, X. Li, Chin. Chem. Lett. 29(2018) 1119-1122.
|
[29] |
G.M. Fang, Y.M. Li, F. Shen, et al., Angew. Chem. Int. Ed. Engl. 50(2011) 7645-7649.
|
[30] |
G.M. Fang, J.X. Wang, L. Liu, Angew. Chem. Int. Ed. Engl. 51(2012) 10347-10350.
|
[31] |
J.S. Zheng, S. Tang, Y.K. Qi, Z.P. Wang, L. Liu, Nat. Protoc. 8(2013) 2483-2495.
|
[32] |
M.K. Tarrant, H.S. Rho, Z. Xie, et al., Nat. Chem. Biol. 8(2012) 262-269.
|
[33] |
N. Yamamoto, Y. Tanabe, R. Okamoto, P.E. Dawson, Y. Kajihara, J. Am. Chem. Soc. 130(2008) 501-510.
|
[34] |
P. Wang, S. Dong, J.A. Brailsford, et al., Angew. Chem. Int. Ed. Engl. 51(2012) 11576-11584.
|
[35] |
K.S. Ajish Kumar, M. Haj-Yahya, D. Olschewski, H.A. Lashuel, A. Brik, Angew. Chem. Int. Ed. Engl. 48(2009) 8090-8094.
|
[36] |
S. Tang, L.J. Liang, Y.Y. Si, et al., Angew. Chem. Int. Ed. Engl. 56(2017) 13333-13337.
|
[37] |
Y.W. Wu, L.K. Oesterlin, K.T. Tan, et al., Nat. Chem. Biol. 6(2010) 534-540.
|
[38] |
F. Li, L. Yi, L. Zhao, et al., Proc. Natl. Acad. Sci. U. S. A. 111(2014) 2572-2577.
|
[39] |
M. Pan, S. Gao, Y. Zheng, et al., J. Am. Chem. Soc. 138(2016) 7429-7435.
|
[40] |
Q. He, J. Li, Y. Qi, et al., Sci. China Chem. 60(2016) 621-627.
|
[41] |
A.M. Levinson, J.H. McGee, A.G. Roberts, et al., J. Am. Chem. Soc. 139(2017) 7632-7639.
|
[42] |
P. McGeady, S. Kuroda, K. Shimizu, Y. Takai, M.H. Gelb, J. Biol. Chem. 270(1995) 26347-26351.
|
[43] |
T. Dudler, M.H. Gelb, Biochem. 36(1997) 12434-12441.
|
[44] |
W.K. Gillette, D. Esposito, M. Abreu Blanco, et al., Sci. Rep. 5(2015) 15916.
|
[45] |
S. Kent, Bioorg. Med. Chem. 25(2017) 4926-4937.
|
[46] |
X. Bi, K.K. Pasunooti, C.F. Liu, Sci. China Chem. 61(2017) 251-265.
|
[47] |
T. Mejuch, H. Waldmann, Bioconjugate Chem. 27(2016) 1771-1783.
|
[48] |
E. Nagele, M. Schelhaas, N. Kuder, H. Waldmann, J. Am. Chem. Soc. 120(1998) 6889-6902.
|
[49] |
L. Brunsveld, J. Kuhlmann, K. Alexandrov, et al., Angew. Chem. Int. Ed. Engl. 45(2006) 6622-6646.
|
[50] |
E.K. Dolence, J.M. Dolence, C.D. Poulter, Bioconjugate Chem. 12(2001) 35-43.
|
[51] |
G. Kragol, M. Lumbierres, J.M. Palomo, H. Waldmann, Angew. Chem.116(2004) 5963-5966.
|
[52] |
J.M. Palomo, M. Lumbierres, H. Waldmann, Angew. Chem. Int. Ed. Engl. 45(2006) 477-481.
|
[53] |
G. Triola, M. Gerauer, K. Gormer, L. Brunsveld, H. Waldmann, Chemistry 16(2010) 9585-9591.
|
[54] |
V. Diaz-Rodriguez, D.G. Mullen, E. Ganusova, J.M. Becker, M.D. Distefano, Org. Lett. 14(2012) 5648-5651.
|
[55] |
A. Yang, Y. Li, S. Pantoom, G. Triola, Y.W. Wu, ChemBioChem 14(2013) 1296-1300.
|
[56] |
Y.C. Huang, Y.M. Li, Y. Chen, et al., Angew. Chem. Int. Ed. Engl. 52(2013) 4858-4862.
|
[57] |
Y.X. Chen, S. Koch, K. Uhlenbrock, et al., Angew. Chem. Int. Ed. Engl. 49(2010) 6090-6095.
|
[58] |
S.Y. Zhang, B. Sperlich, F.Y. Li, et al., ACS Chem. Biol. 12(2017) 1703-1710.
|
[59] |
D. Gottlieb, C. Grunwald, C. Nowak, J. Kuhlmann, H. Waldmann, Chem. Commun. (2006) 260-262.
|
[60] |
K. Kuhn, D.J. Owen, B. Bader, et al., J. Am. Chem. Soc. 123(2001) 1023-1035.
|
[61] |
B. Ludolph, H. Waldmann, Chemistry 9(2003) 3683-3691.
|
[62] |
H. Mao, S.A. Hart, A. Schink, B.A. Pollok, J. Am. Chem. Soc. 126(2004) 2670-2671.
|
[63] |
A. Dementiev, Protein Exp. Purif. 84(2012) 86-93.
|
[64] |
D.K. Simanshu, D.V. Nissley, F. McCormick, Cell 170(2017) 17-33.
|
[65] |
J.R. Silvius, Curr. Top. Membr. 2002(2002) 371-395.
|
[66] |
B. Bader, K. Kuhn, D.J. Owen, et al., Nature 403(2000) 223-226.
|
[67] |
D. Huster, K. Kuhn, D. Kadereit, H. Waldmann, K. Arnold, Angew. Chem. Int. Ed. Engl. 40(2001) 1056-1058.
|
[68] |
D. Huster, P. Muller, K. Arnold, A. Herrmann, Biophys. J. 80(2001) 822-831.
|
[69] |
D. Huster, A. Vogel, C. Katzka, et al., J. Am. Chem. Soc. 125(2003) 4070-4079.
|
[70] |
A. Vogel, C.P. Katzka, H. Waldmann, et al., J. Am. Chem. Soc.127(2005) 12263-12272.
|
[71] |
L. Brunsveld, H. Waldmann, D. Huster, Biochim. Biophys. Acta 1788(2009) 273-288.
|
[72] |
L. Janosi, Z. Li, J.F. Hancock, A.A. Gorfe, Proc. Natl. Acad. Sci. U. S. A. 109(2012) 8097-8102.
|
[73] |
A. Vogel, G. Reuther, K. Weise, et al., Angew. Chem. Int. Ed. Engl. 48(2009) 8784-8787.
|
[74] |
K. Weise, G. Triola, L. Brunsveld, H. Waldmann, R. Winter, J. Am. Chem. Soc.131(2009) 1557-1564.
|
[75] |
K. Weise, S. Kapoor, C. Denter, et al., J. Am. Chem. Soc. 133(2011) 880-887.
|
[76] |
J.A. Parker, C. Mattos, Mol. Cancer Res. 13(2015) 595-603.
|
[77] |
J.T. Swarthout, S. Lobo, L. Farh, et al., J. Biol. Chem. 280(2005) 31141-31148.
|
[78] |
M. Schmick, A. Kraemer, P.I. Bastiaens, Trends Cell Biol. 25(2015) 190-197.
|
[79] |
M. Hanzal-Bayer, L. Renault, P. Roversi, A. Wittinghofer, R.C. Hillig, EMBO J. 21(2002) 2095-2106.
|
[80] |
V. Nancy, I. Callebaut, A. El Marjou, J. de Gunzburg, J. Biol. Chem. 277(2002) 15076-15084.
|
[81] |
S.A. Ismail, Y.X. Chen, A. Rusinova, et al., Nat. Chem. Biol. 7(2011) 942-949.
|
[82] |
A. Chandra, H.E. Grecco, V. Pisupati, et al., Nat. Cell Biol. 14(2011) 148-158.
|
[83] |
S.Dharmaiah, L. Bindua, T.H. Trana, et al., Proc.Natl. Acad.Sci. U. S. A.113(2016) E6766-E6775.
|
[84] |
B. Chen, Y. Jiang, S. Zeng, et al., PLoS Genet. 6(2010) e1001235.
|
[85] |
O. Rocks, M. Gerauer, N. Vartak, et al., Cell 141(2010) 458-471.
|
[86] |
P.J. Sung, F.D. Tsai, H. Vais, et al., Proc. Natl. Acad. Sci. U. S. A.110(2013) 20593-20598.
|
[87] |
T.G. Bivona, S.E. Quatela, B.O. Bodemann, et al., Mol. Cell 21(2006) 481-493.
|
[88] |
H. Jang, A. Banerjee, T. Chavan, V. Gaponenko, R. Nussinov, J. Biol. Chem. 292(2017) 12544-12559.
|
[89] |
B. Sperlich, S. Kapoor, H. Waldmann, R. Winter, K. Weise, Biophys. J.111(2016) 113-122.
|
|
|
|