|
|
Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs |
Ge-Min Fanga, Xiao-Xu Chena, Qian-Qian Yangb, Liang-Jing Zhub, Ning-Ning Lib, Hai-Zhu Yub, Xiang-Ming Mengb |
a Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
b Department of Chemistry, Anhui University, Hefei 230601, China |
|
|
Guide Disulfide bond-rich peptide toxins are promising scaffolds for the development of medicinal peptides because they possess a rigid 3D structure formed by multiple disulfide bonds. In this review, we discussed recent advances in the discovery, structural elucidation and chemical synthesis of disulfide-rich peptide toxins and their analogs. |
|
Abstract Recently, medicinal peptide molecules are of great interest to many international pharmaceutical companies, mainly because of their relatively lower research costs, shorter research cycles, and the greater likelihood of being drugs, when compared with traditional small molecules. Due to the great variety in molecule structures and the diverse biological functions, disulfide-rich peptide toxins have become a shining molecular library for the development of polypeptide drugs. In view of the increasing amount of related publications, here we summarize the discovery, structural elucidation and chemical synthesis of disulfide-rich peptide toxins and their analogs.
|
Received: 28 November 2017
|
Fund:This work was supported by National Natural Science Foundation of China (No. 21778001). |
Corresponding Authors:
Ge-Min Fang, fgmsxy@gmail.com;Xiang-Ming Meng, mengxm@ahu.edu.cn
E-mail: fgmsxy@gmail.com;mengxm@ahu.edu.cn
|
|
|
|
[1] |
K. Fosgerau, T. Hoffamnn, Drug Discov. Today 20(2015) 122-128.
|
[2] |
B.B. Carstens, G. Berecki, J.T. Daniel, et al., Angew. Chem. Int. Ed. 55(2016) 4692-4696.
|
[3] |
T. Durek, I. Vetter, C.I.A. Wang, et al., ACS Chem. Biol. 8(2013) 1215-1222.
|
[4] |
H. Zhang, M. Du, J. Xie, et al., Angew. Chem. Int. Ed. 55(2016) 9306-9310.
|
[5] |
C. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 5(2009) 502-507.
|
[6] |
T. Passioura, T. Katoh, Y. Goto, H. Suga, Annu. Rev. Biochem. 83(2014) 727-752.
|
[7] |
Y. Li, A. Gould, T. Aboye, et al., J. Med. Chem. 60(2017) 1916-1927.
|
[8] |
K. Jagadish, A. Gould, R. Borra, et al., Angew. Chem. Int. Ed. 54(2015) 8390-8394.
|
[9] |
J.G. McGivern, Neuropsychiatr. Dis. Treat. 3(2007) 69-85.
|
[10] |
S.W.B. Yu, S.S.C. Rao, Therap. Adv. Gastroenterol. 7(2014) 193-205.
|
[11] |
R.H. Thomas, D.R. Luthin, Pharmacotherapy 35(2015) 613-630.
|
[12] |
K.B. Akondi, M. Muttenthaler, S. Dutertre, et al., Chem. Rev.114(2014) 5815-5847.
|
[13] |
A.C. Conibear, D.J. Craik, Angew. Chem. Int. Ed. 53(2014) 10612-10623.
|
[14] |
B.M. Olivera, W.R. Gray, R. Zeikus, et al., Science 230(1985) 1338-1343.
|
[15] |
R.A. Myers, L.J.L. Cruz, J.E. Rivier, B.M. Olivera, Chem. Rev. 93(1993) 1923-1936.
|
[16] |
A.G. Craig, J. Toxicol. Toxin Rev. 19(2000) 53-93.
|
[17] |
B.M. Ueberheide, D. Fenyö, P.F. Alewood, B.T. Chait, Proc. Natl. Acad. Sci. U. S. A. 106(2009) 6910-6915.
|
[18] |
Q.Y. He, Q.Z. He, X.C. Deng, et al., Nucleic Acids Res. 36(2008) D293-297.
|
[19] |
G. Naamati, M. Askenazi, M. Linial, Nucleic Acids Res. 37(2009) W363-368.
|
[20] |
E. Lim, A. Pon, Y. Djoumbou, et al., Nucleic Acids Res. 38(2010) D781-786.
|
[21] |
Q. Kaas, R. Yu, A.H. Jin, S. Dutertre, D.J. Craik, Nucleic Acids Res. 40(2012) D325-330.
|
[22] |
J. Gehrmann, N.L. Daly, P.F. Alewood, D.J. Craik, J. Med. Chem. 42(1999) 2364-2372.
|
[23] |
B. Thomma, B. Cammue, K. Thevissen, Planta 216(2002) 193-202.
|
[24] |
T. Ganz, Nat. Rev. Immunol. 3(2003) 710-720.
|
[25] |
R.I. Lehrer, T. Ganz, Curr. Opin. Immunol. 14(2002) 96-102.
|
[26] |
D.J. Schibli, H.N. Hunter, V. Aseyev, et al., J. Biol. Chem. 277(2002) 8279-8289.
|
[27] |
Y.Q. Tang, J. Yuan, G. Osapay, et al., Science 286(1999) 498-502.
|
[28] |
M.C. Alexander, T. Hong, L.M. Boo, et al., Proc. Natl. Acad. Sci. U. S. A. 99(2002) 1813-1818.
|
[29] |
M. Trabi, H.J. Schirra, D.J. Craik, Biochemistry 40(2001) 4211-4221.
|
[30] |
A.C. Conibear, K.J. Rosengren, N.L. Daly, S.T. Henriques, D.J. Craik, J. Biol. Chem. 288(2013) 10830-10840.
|
[31] |
D.J. Craik, N.L. Daly, T. Bond, C. Waine, J. Mol. Biol. 294(1999) 1327-1336.
|
[32] |
S.T. Henriques, D.J. Craik, ACS Chem. Biol. 7(2012) 626-636.
|
[33] |
C.T.T. Wong, D.K. Rowlands, C.H. Wong, et al., Angew. Chem. Int. Ed. 51(2012) 5620-5624.
|
[34] |
K. Jagadish, A. Gould, R. Borra, et al., Angew. Chem. Int. Ed. 54(2015) 8390-8394.
|
[35] |
C.K. Wang, C.W. Gruber, M. Cemazar, et al., ACS Chem. Biol. 9(2014) 156-163.
|
[36] |
M.E. Felizmenio-Quimio,N.L. Daly, D.J. Craik, J. Biol. Chem. 276(2001) 22875-22882.
|
[37] |
C. Jennings, J. West, C. Waine, D. Craik, M. Anderson, Proc. Natl. Acad. Sci. U. S. A. 98(2001) 10614-10619.
|
[38] |
M.L. Colgrave, A.C. Kotze, Y.H. Huang, et al., Biochemistry 47(2008) 5581-5589.
|
[39] |
M.R.R. Plan, I. Saska, A.G. Caguan, D.J. Craik, J. Agric. Food. Chem. 56(2008) 5237-5241.
|
[40] |
B. Chen, M.L. Colgrave, N.L. Daly, et al., J. Biol. Chem. 280(2005) 22395-22405.
|
[41] |
S.T. Henriques, Y.H. Huang, S. Chaousis, et al., Chem. Biol. 22(2015) 1087-1097.
|
[42] |
H. Terlau, B.M. Olivera, Physiol. Rev. 84(2004) 41-68.
|
[43] |
W.R. Gray, B.M. Olivera, G.C. Zafaralla, et al., Biochemistry 31(1992) 11864-11873.
|
[44] |
E. Leipold, A. Hansel, B.M. Olivera, H. Terlau, S.H. Heinemann, FEBS Lett. 579(2005) 3881-3884.
|
[45] |
K.J. Shon, M. Stocker, H. Terlau, et al., J. Biol. Chem. 273(1998) 33-38.
|
[46] |
K.J. Nielsen, T. Schroeder, R. Lewis, J. Mol. Recognit. 13(2000) 55-70.
|
[47] |
R.A. Li, G.F. Tomaselli, Toxicon 44(2004) 117-122.
|
[48] |
G.P. Miljanich, Curr. Med. Chem. 11(2004) 3029-3040.
|
[49] |
L. Moise, A. Piserchio, V.J. Basus, E. Hawrot, J. Biol. Chem. 277(2002) 12406-12417.
|
[50] |
H.S. Young, L.G. Herbette, V. Skita, Biophys. J. 85(2003) 943-953.
|
[51] |
Y.H. Chen, J.C. Tai, W.J. Huang, et al., Biochemistry 21(1982) 2592-2600.
|
[52] |
R. Doley, R.M. Kini, Cell. Mol. Life Sci. 66(2009) 2851-2871.
|
[53] |
Y.C. Cheng, J.J. Wang, L.S. Chang, Toxicon 51(2008) 304-315.
|
[54] |
J.H. Shiu, C.Y. Chen, L.S. Chang, et al., Proteins 57(2004) 839-849.
|
[55] |
J.C. Dewan, G.A. Grant, J.C. Sacchettini, Biochemistry 33(1994) 13147-13154.
|
[56] |
J. Ciolek, H. Reinfrank, L. Quinton, et al., Proc. Natl. Acad. Sci. U. S. A.114(2017) 7154-7159.
|
[57] |
S. Diochot, A. Baron, M. Salinas, et al., Nature 490(2012) 552-555.
|
[58] |
J.P. Rosso, J.R. Schwarz, M. Diaz-Bustamante, et al., Proc. Natl. Acad. Sci. U. S. A. 112(2015) E891-E900.
|
[59] |
P. Hidalgo, R. Mackinnon, Science 268(1995) 307-310.
|
[60] |
R.C.R. Vega, L.D. Possani, Toxicon 43(2004) 865-875.
|
[61] |
T. Durek, I. Vetter, C.A. Wang, et al., ACS Chem. Biol. 8(2013) 1215-1222.
|
[62] |
J.J. Smith, J.M. Hill, M.J. Little, et al., Proc. Natl. Acad. Sci. U. S. A. 108(2011) 10478-10483.
|
[63] |
M.L. Ruiz, R.L. Kraus, J. Med. Chem. 58(2015) 7093-7118.
|
[64] |
D.J. Craik, N.L. Daly, C. Waine, Toxicon 39(2001) 43-60.
|
[65] |
J.H. Park, K.P. Carlin, G. Wu, et al., J. Med. Chem. 57(2014) 6623-6631.
|
[66] |
J.D. Osteen, V. Herzig, J. Gilchrist, et al., Nature 534(2016) 494-499.
|
[67] |
J. Siemens, S. Zhou, R. Piskorowski, et al., Nature 444(2006) 208-212.
|
[68] |
C.J. Bohlen, A. Priel, S. Zhou, et al., Cell 141(2010) 834-845.
|
[69] |
M. Kita, D.S. Black, O. Ohno, et al., J. Am. Chem. Soc.131(2009) 18038-18039.
|
[70] |
S. Yang, Y. Xiao, D. Kang, et al., Proc. Natl. Acad. Sci. U. S. A.110(2013) 17534-17539.
|
[71] |
Z.C. Liu, R. Zhang, F. Zhao, et al., J. Proteome Res. 11(2012) 6197-6212.
|
[72] |
P. Sun, F. Wu, M. Wen, et al., Sci. Rep. 5(2015) 13399.
|
[73] |
M.J. Gallagher, K.M. Blumenthal, J. Biol. Chem. 269(1994) 254-259.
|
[74] |
Z. Dekan, S.J.Headey, M. Scanlon, et al., Angew. Chem. Int. Ed.56(2017) 8495-8499.
|
[75] |
E. Habermann, Angew. Chem. Int. Ed. 12(1973) 83-84.
|
[76] |
A. Gould, Y. Li, S. Majumder, et al., Mol. BioSyst. 8(2012) 1359-1365.
|
[77] |
J.S. Zheng, S. Tang, G. Ye, H.N. Chang, L. Liu, ChemBioChem 13(2012) 542-546.
|
[78] |
J.X. Wang, G.M. Fang, Y. He, et al., Angew. Chem. Int. Ed. 54(2015) 2194-2198.
|
[79] |
M. Pan, Y. He, M. Wen, et al., Chem. Commun. 50(2014) 5837-5839.
|
[80] |
P.E. Dawson, T.W. Muir, I. Clark-Lewis, S.B.H. Kent, Science 266(1994) 776-779.
|
[81] |
G.M. Fang, J.X. Wang, L. Liu, Angew. Chem. Int. Ed. 51(2012) 10347-10350.
|
[82] |
J.S. Zheng, S. Tang, Y.K. Qi, Z.P. Wang, L. Liu, Nat. Protoc. 8(2013) 2483-2495.
|
[83] |
J.S. Zheng, H.N. Chang, F.L. Wang, L. Liu, J. Am. Chem. Soc. 133(2011) 11080-11083.
|
[84] |
S. Tang, Y.Y. Si, Z.P. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 5713-5717.
|
[85] |
G.M. Fang, Y.M. Li, F. Shen, et al., Angew. Chem. Int. Ed. 50(2011) 7645-7649.
|
[86] |
Y.C. Huang, Y.M. Li, Y. Chen, et al., Angew. Chem. Int. Ed. 52(2013) 4858-4862.
|
[87] |
Y.M. Li, Y.T. Li, M. Pan, et al., Angew. Chem. Int. Ed. 53(2014) 2198-2202.
|
[88] |
Z. Wang, W. Xu, L. Liu, T.F. Zhu, Nat. Chem. 8(2016) 698-704.
|
[89] |
M. Pan, S. Gao, Y. Zheng, et al., J. Am. Chem. Soc. 138(2016) 7429-7435.
|
[90] |
R. Zitterbart, O. Seitz, Angew. Chem. Int. Ed. 55(2016) 7252-7256.
|
[91] |
S.F. Loibl, Z. Harpaz, O. Seitz, Angew. Chem. Int. Ed. 54(2015) 15055-15059.
|
[92] |
M.M. Altamirano, C. Garcia, L.D. Possani, A.R. Fersht, Nat. Biotechnol. 17(1999) 187-191.
|
[93] |
M. Sela, F.H. White, C.B. Anfinsen, Science 125(1957) 691-692.
|
[94] |
G. Bulaj, O. Buczek, I. Goodsell, et al., Proc. Natl. Acad. Sci. U. S. A. 100(2003) 14562-14568.
|
[95] |
A. Schrimpf, U. Linne, A. Geyer, Org. Biomol. Chem. 15(2017) 2512-2521.
|
[96] |
V.P. Terrier, A.F. Delmas, V. Aucagne, Org. Biomol. Chem. 15(2017) 316-319.
|
[97] |
C.I. Schroeder, L.D. Rash, X. Vila-Farres, et al., Angew. Chem. Int. Ed. 53(2014) 1017-1020.
|
[98] |
B. Dang, T. Kubota, A.M. Correa, F. Bezanilla, S.B.H. Kent, Angew. Chem. Int. Ed. 53(2014) 8970-8974.
|
[99] |
B. Dang, T. Kubota, K. Mandal, et al., Angew. Chem. Int. Ed. 55(2016) 8639-8642.
|
[100] |
B. Dang, T. Kubota, K. Mandal, F. Bezanilla, S.B.H. Kent, J. Am. Chem. Soc. 135(2013) 11911-11919.
|
[101] |
M. Gongora-Benitez, J. Tulla-Puche, F. Albericio, Chem. Rev. 114(2014) 901-926.
|
[102] |
T.M. Postma, F. Albericio, Eur. J. Org. Chem. 17(2014) 3519-3530.
|
[103] |
H. Hibino, Y. Miki, Y. Nishiuchi, J. Pept. Sci. 20(2014) 30-35.
|
[104] |
Y.K. Qi, S. Tang, Y.C. Huang, et al., Org. Biomol. Chem. 14(2016) 4194-4198.
|
[105] |
B.L. Pentelute, S.B.H. Kent, Org. Lett. 9(2007) 687-690.
|
[106] |
X. Yang, V. Gelfanov, F. Liu, R. DiMarchi, Org. Lett. 18(2016) 5516-5519.
|
[107] |
S.K. Maity, M. Jbara, S. Laps, A. Brik, Angew. Chem. Int. Ed. 55(2016) 8108-8112.
|
[108] |
M. Jbara, S.K. Maity, A. Brik, Angew. Chem. Int. Ed. 56(2017) 10644-10655.
|
[109] |
T.D. Kondasinghe, H.Y. Saraha, S.B. Odeesho, J.L. Stockdill, Org. Biomol. Chem. 15(2017) 2914-2918.
|
[110] |
T.M. Postma, M. Giraud, F. Albericio, Org. Lett. 14(2012) 5468-5471.
|
[111] |
M. Muttenthaler, Y.G. Ramos, D. Feytens, A.D. de Araujo, P.F. Alewood, Pept. Sci. 94(2010) 423-432.
|
[112] |
A. Brust, C.I.A. Wang, N.L. Daly, et al., Angew. Chem. Int. Ed. 52(2013) 12020-12023.
|
[113] |
F. Shen, Z.P. Zhang, J.B. Li, Y. Lin, L. Liu, Org. Lett. 13(2011) 568-571.
|
[114] |
Z. Dekan, M. Mobli, M.W. Pennington, et al., Angew. Chem. Int. Ed. 53(2014) 2931-2934.
|
[115] |
J.L. Stymiest, B.F. Mitchell, S. Wong, J.C. Vederas, Org. Lett. 5(2003) 47-49.
|
[116] |
D.J. Derksen, J.L. Stymiest, J.C. Vederas, J. Am. Chem. Soc. 128(2006) 14252-14253.
|
[117] |
S. Chhabra, A. Belgi, P. Bartels, et al., J. Med. Chem. 57(2014) 9933-9944.
|
[118] |
B.J. van Lierop, S.D. Robinson, S.N. Kompella, et al., ACS Chem. Biol. 8(2013) 1815-1821.
|
[119] |
A. Glas, D. Bier, G. Hahne, et al., Angew. Chem. Int. Ed. 53(2014) 2489-2493.
|
[120] |
A. Glas, T.N. Grossmann, Synletter 26(2015) 1-5.
|
[121] |
H.K. Cui, Y. Guo, Y. He, et al., Angew. Chem. Int. Ed. 52(2013) 9558-9562.
|
[122] |
Y. Guo, D.M. Sun, F.L. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 14276-14281.
|
[123] |
Y. Xu, T. Wang, C.J. Guan, et al., Tetrahedron Lett. 58(2017) 1677-1680.
|
[124] |
Y. Guo, C. Liu, H. Song, et al., RSC Adv. 7(2017) 2110-2114.
|
[125] |
Y. Wu, Y.H. Li, X. Li, et al., Chem. Sci. 8(2017) 7368-7373.
|
[126] |
Y. Xu, L. Xu, Y. Xia, et al., Chem. Commun. 51(2015) 13189-13192.
|
[127] |
P.J. Knerr, W.A. van der Donk, Ann. Rev. Biochem. 81(2012) 479-505.
|
[128] |
L. Huo, W.A. van der Donk, J. Am. Chem. Soc. 138(2016) 5254-5257.
|
[129] |
J.P. Mayer, J.R. Heil, J. Zhang, M.C. Munson, Tetrahedron Lett. 36(1995) 7387-7390.
|
[130] |
Y. Wang, D.H. Chou, Angew. Chem. Int. Ed. 54(2015) 10931-10934.
|
[131] |
K. Hu, H. Geng, Q. Zhang, et al., Angew. Chem. Int. Ed. 55(2016) 8013-8017.
|
[132] |
P.J. Knerr, A. Tzekou, D. Ricklin, et al., ACS Chem. Biol. 6(2011) 753-760.
|
[133] |
B. Zhao, D. Yang, J.H. Wong, et al., ChemBioChem 17(2016) 1416-1420.
|
[134] |
Z.V.F. Wright, S. McCarthy, R. Dickman, et al., J. Am. Chem. Soc. 139(2017) 13063-13075.
|
[135] |
C.M.B.K. Kourra, N. Cramer, Chem. Sci. 7(2016) 7007-7012.
|
[136] |
H.J. Reich, R.J. Hondal, ACS Chem. Biol. 11(2016) 821-841.
|
[137] |
A.D. de Araujo, M. Mobli, J. Castro, et al., Nat. Commun. 5(2014) 3165.
|
[138] |
A.D. de Araujo, M. Mobli, G.F. King, P.F. Alewood, Angew. Chem. Int. Ed. 51(2012) 10298-10302.
|
[139] |
A.D. de Araujo, B. Callaghan, S.T. Nevin, et al., Angew. Chem. Int. Ed. 50(2011) 6527-6529.
|
[140] |
M. Mobli, A.D. de Araujo, L.K. Lambert, et al., Angew. Chem. Int. Ed. 48(2009) 9312-9314.
|
[141] |
M. Muttenthaler, S.T. Nevin, A.A. Grishin, et al., J. Am. Chem. Soc. 132(2010) 3514-3522.
|
[142] |
N.E. Shepherd, H.N. Hoang, G. Abbenante, D.P. Fairlie, J. Am. Chem. Soc. 127(2005) 2974-2983.
|
[143] |
H.N. Hoang, R.W. Driver, R.L. Beyer, et al., Angew. Chem. Int. Ed. 55(2016) 8275-8279.
|
[144] |
H. Zhao, Q.S. Liu, H. Geng, et al., Angew. Chem. Int. Ed. 55(2016) 12088-12093.
|
[145] |
Y. Tian, X. Zeng, J. Li, et al., Chem. Sci. 8(2017) 7576-7581.
|
[146] |
H. Zhao, Y. Jiang, Y. Tian, et al., Org. Biomol. Chem. 15(2017) 459-464.
|
[147] |
B. Hargittai, N.A. Sole, D.R. Groebe, S.N. Abramson,G. Barany, J. Med. Chem. 43(2000) 4787-4792.
|
[148] |
K.K. Khoo, M.J. Wilson, B.J. Smith, et al., J. Med. Chem. 54(2011) 7558-7566.
|
[149] |
C.W. Tornfe, C. Christensen, M. Meldal, J. Org. Chem. 67(2002) 3057-3064.
|
[150] |
V.V. Rostovtsev, G.L. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed. 41(2002) 2596-2599.
|
[151] |
M. Fmpting, O. Avrutina, R. Meusinger, et al., Angew. Chem. Int. Ed. 50(2011) 5207-5211.
|
[152] |
S. Pacifico, A. Kerckhoffs, A.J.Fallow, et al., Org. Biomol. Chem.15(2017) 4704-4710.
|
[153] |
K. Holland-Nell, M. Meldal, Angew. Chem. Int. Ed. 50(2011) 5204-5206.
|
[154] |
A. Gori, C.I.A. Wang, P.J. Harvey, et al., Angew. Chem. Int. Ed. 54(2015) 1361-1364.
|
[155] |
M. Empting, O. Avrutina, R. Meusinger, et al., Angew. Chem. Int. Ed. 50(2011) 5207-5211.
|
[156] |
A.M. Spokoyny, Y. Zou, J.J. Ling, et al., J. Am. Chem. Soc.135(2013) 5946-5949.
|
[157] |
Y. Zheng, L. Zhai, Y. Zhao, C. Wu, J. Am. Chem. Soc. 137(2015) 15094-15097.
|
[158] |
W. Liu, Y. Zheng, X. Kong, et al., Angew. Chem. Int. Ed. 56(2017) 4458-4463.
|
[159] |
Y. Chen, T. Li, J. Li, et al., Org. Biomol. Chem. 15(2017) 1921-1929.
|
[160] |
T. Lühmann, S.K. Mong, M.D. Simon, L. Meinel, B.L. Pentelute, Org. Biomol. Chem. 14(2016) 3345-3349.
|
[161] |
S. Rapireddy, L. Nhon, R.E. Meehan, et al., J. Am. Chem. Soc.134(2012) 4041-4044.
|
[162] |
J.A. Getz, O. Cheneval, D.J. Craik, P.S. Daugherty, ACS Chem. Biol. 8(2013) 1147-1154.
|
[163] |
Y.P. Chang, J. Banerjee, C. Dowell, et al., J. Med. Chem. 57(2014) 3511-3521.
|
[164] |
R. Zhao, H. Dai, N. Mendelman, et al., Proc. Natl. Acad. Sci. U. S. A. 112(2015) E7013-7021.
|
[165] |
J.S. Zheng, S. Tang, Y.C. Huang, L. Liu, Acc. Chem. Res. 46(2013) 2475-2484.
|
[166] |
Y.C. Huang, G.M. Fang, L. Liu, Natl. Sci. Rev. 3(2016) 107-116.
|
[167] |
J.B. Li, S. Tang, J.S. Zheng, C.L. Tian, L. Liu, Acc. Chem. Res. 50(2017) 1143-1153.
|
[168] |
B. Yan, L. Ye, W. Xu, L. Liu, Bioorg. Med. Chem. 25(2017) 4953-4965.
|
[169] |
B. Farrow, M. Wong, J. Malette, et al., Angew. Chem. Int. Ed. 54(2015) 7114-7119.
|
[170] |
Z. Zhu, A. Shaginian, L.S.C. Grady, et al., ACS Chem. Biol. 13(2018) 53-59.
|
|
|
|