|
|
Recent advances in enzyme-mediated peptide ligation |
Silin Xua, Zhenguang Zhaob, Junfeng Zhaoa,c |
a Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China;
b The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
c State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China |
|
|
Guide Artificial synthesis and site-specific modification of peptides and proteins have evolved into an indispensable tool for protein engineers and chemical biologists. Chemical and enzymatic approaches to peptide ligation are important alternatives of recombinant DNA technology for protein synthesis and modification. In the past decades, several natural peptide ligases have been discovered. Additionally, protein engineering for improving the ligation efficiencies of the natural peptide ligase and reversing the functionality of protease have provided more powerful peptide ligases. Herein, we briefly summarized the advances of enzyme-mediated peptide ligation and their application in protein synthesis and modification. |
|
Abstract Artificial synthesis and site-specific modification of peptides and proteins has evolved into an indispensable tool for protein engineers and chemical biologists. Chemical and enzymatic approaches to peptide ligation are important alternatives of recombinant DNA technology for protein synthesis and modification. Although as old as that of chemical procedures, enzyme-mediated peptide ligation is far less developed than that of chemical counterpart due to the difficult availability of peptide ligase. Fortunately, this situation has been changed slowly with the fast development of biological techniques. In the past decades, several natural peptide ligases have been discovered. Protein engineering to improve the ligation efficiencies of the natural peptide ligase and to reverse the functionality of protease provide more powerful peptide ligases. In this review, the advances of enzyme-mediated peptide ligation and their application in protein synthesis and modification will be discussed.
|
Received: 04 April 2018
|
Fund:The National Natural Science Foundation of China (Nos. 21462023, 21778025) and the Education Department of Jiangxi Province (No. 150297) are acknowledged for support of this research. |
Corresponding Authors:
Junfeng Zhao, zhaojf@jxnu.edu.cn
E-mail: zhaojf@jxnu.edu.cn
|
|
|
|
[1] |
T. Curtius, J. Prakt, Chemie 26(1882) 145-208.
|
[2] |
V.R. Pattabiraman, J.W. Bode, Nature 480(2011) 471-479.
|
[3] |
C.P. Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. 47(2008) 10030-10074.
|
[4] |
T. Kimmerlin, D. Seebach, Chem. Biol. Drug Des. 65(2005) 229-260.
|
[5] |
M. Bergmann, L. Zervas, Ber. Deut. Chem. Ges. 65(1932) 1192-1201.
|
[6] |
V. du Vigneaud, C. Ressler, J.M. Swan, et al., J. Am. Chem. Soc. 76(1954) 3115-3121.
|
[7] |
A. El-Faham, F. Albericio, Chem. Rev. 111(2011) 6557-6602.
|
[8] |
R.B. Merrifield, J. Am. Chem. Soc. 85(1963) 2149-2154.
|
[9] |
R.B. Merrifield, Angew. Chem. Int. Ed. 24(1985) 799-810.
|
[10] |
C.P. Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. 47(2008) 10030-10074.
|
[11] |
V.R. Pattabiraman, J.W. Bode, Nature 480(2011) 471-479.
|
[12] |
J.H. Yang, J.F. Zhao, Sci. China Chem. 61(2018) 97-112.
|
[13] |
D.S. Kemp, S.-L. Leung, D.J. Kerkman, Tetrahedron Lett. 22(1981) 181-184.
|
[14] |
D.S. Kemp, D.J. Kerkman, Tetrahedron Lett. 22(1981) 185-186.
|
[15] |
D.S. Kemp, N.G. Galakatos, B. Bowen, et al., J. Org. Chem. 51(1986) 1829-1838.
|
[16] |
D.S. Kemp, R.I. Carey, J. Org. Chem. 58(1993) 2216-2222.
|
[17] |
P.E. Dawson, T.W. Muir, l. Clarklewis, et al., Science 266(1994) 776-779.
|
[18] |
S.B.H. Kent, Chem. Soc. Rev. 38(2009) 338-351.
|
[19] |
A. Brik, C.-H. Wong, Chem. Eur. J. 13(2007) 5670-5675.
|
[20] |
R.J. Payne, S. Ficht, W.A. Greenberg, et al., Angew. Chem. Int. Ed. 47(2008) 4411-4415.
|
[21] |
M. Köhn, R. Breinbauer, Angew. Chem. Int. Ed. 43(2004) 3106-3116.
|
[22] |
B.L. Nilsson, L.L. Kiessling, R.T. Raines, Org. Lett. 2(2000) 1939-1941.
|
[23] |
E. Saxon, C.R. Bertozzi, Science 287(2000) 2007-2010.
|
[24] |
J.W. Bode, R.M. Fox, K.D. Baucom, Angew. Chem. Int. Ed. 45(2006) 1248-1252.
|
[25] |
I. Pusterla, J.W. Bode, Angew. Chem. Int. Ed. 51(2012) 513-516.
|
[26] |
I. Pusterla, J.W. Bode, Nat. Chem. 7(2015) 668-672.
|
[27] |
X. Li, H.Y. Lam, Y. Zhang, et al., Org. Lett. 12(2010) 1724-1727.
|
[28] |
Y. Zhang, C. Xu, H.Y. Lam, et al., Proc. Natl. Acad. Sci. U. S. A. 110(2013) 6657-6662.
|
[29] |
C.L. Lee, H. Liu, C.T.T. Wong, et al., J. Am. Chem. Soc. 138(2016) 10477-10484.
|
[30] |
C.F. Liu, J.P. Tam, Proc. Natl. Acad. Sci. U. S. A. 91(1994) 6584-6588.
|
[31] |
C.F. Liu, J.P. Tam, J. Am. Chem. Soc. 116(1994) 4149-4153.
|
[32] |
C.L. Lee, X.C. Li, Sci. Chin. Chem. 59(2016) 1061-1064.
|
[33] |
C. Xu, J. Xu, H. Liu, et al., Chin. Chem. Lett. 29(2018) 1113-1116.
|
[34] |
F. Mende, O. Seitz, Angew. Chem. Int. Ed. 50(2011) 1232-1240.
|
[35] |
J.S. Zheng, S. Tang, Y.C. Huang, et al., Acc. Chem. Res. 46(2013) 2475-2484.
|
[36] |
J.S. Zheng, H.N. Chang, F.L. Wang, et al., J. Am. Chem. Soc. 133(2011) 11080-11083.
|
[37] |
G.M. Fang, J.X. Wang, L. Liu, Angew. Chem. Int. Ed. 51(2012) 10347-10350.
|
[38] |
H.X. Li, S.W. Dong, Sci. China. Chem. 60(2017) 201-213.
|
[39] |
G.M. Fang, J.X. Wang, L. Liu, Angew. Chem. Int. Ed. 51(2012) 10347-10350.
|
[40] |
J.S. Zheng, S. Tang, Y.K. Qi, et al., Nat. Protoc. 8(2013) 2483-2495.
|
[41] |
H. Rohde, O. Seitz, Biopolymers 94(2010) 551-559.
|
[42] |
J. Ma, J. Zeng, Q. Wan, Top. Curr. Chem. 363(2015) 57-101.
|
[43] |
L.Z. Yan, P.E. Dawson, J. Am. Chem. Soc. 123(2001) 526-533.
|
[44] |
Q. Wan, S.J. Danishefsky, Angew. Chem. Int. Ed. 46(2007) 9248-9252.
|
[45] |
Q.Q. He, G.M. Fang, L. Liu, Chin. Chem. Lett. 24(2013) 265-269.
|
[46] |
A.A. Vinogradov, E.D. Evans, B.L. Pentelute, Chem. Sci. 6(2015) 2997-3002.
|
[47] |
S. Tang, Y.Y. Si, Z.P. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 5713-5717.
|
[48] |
M. Pan, S. Gao, Y. Zheng, et al., J. Am. Chem. Soc. 138(2016) 7429-7435.
|
[49] |
M. Jbara, S.K. Maity, M. Morgan, et al., Angew. Chem. Int. Ed. 55(2016) 4972-4976.
|
[50] |
Z. Wang, W. Xu, L. Liu, et al., Nat. Chem. 8(2016) 698-704.
|
[51] |
A.M. Levinson, J.H. McGee, A.G. Roberts, et al., J. Am. Chem. Soc. 139(2017) 7632-7639.
|
[52] |
J. Bongers, E.P. Heimer, Peptides 15(1994) 183-193.
|
[53] |
F. Guzman, S. Barberis, A. Illanes, Electron. J. Biotechnol. 10(2007) 279-314.
|
[54] |
M. Schmidt, A. Toplak, P.J. Quaedflieg, et al., Curr. Opin. Chem. Biol. 38(2017) 1-7.
|
[55] |
M. Bergmann, H.F. Conrat, D.G. Doherty, J. Biol. Chem. 124(1938) 1-6.
|
[56] |
M. Bergmann, H.F. Conrat, J. Biol. Chem. 119(1937) 707-720.
|
[57] |
C.H. Wong, K.T. Wang, Experientia 47(1991) 1123-1129.
|
[58] |
H.D. Jakubke, P. Kuhl, A. Könnecke, Angew. Chem. Int. Ed. 24(1985) 85-93.
|
[59] |
V. Schellenberger, H.D. Jakubke, Angew. Chem. Int. Ed. 30(1991) 1437-1449.
|
[60] |
H.D. Jakubke, Angew. Chem. Int. Ed. 34(1995) 175-177.
|
[61] |
J.H. van't Hoff, Zeitschrift für, Anorg. Chem. 18(1898) 1-13.
|
[62] |
C.F.W. Becker, Nat. Chem. Biol. 14(2017) 2-3.
|
[63] |
T.K. Chang, D.Y. Jackson, J.P. Burnier, et al., Proc. Natl. Acad. Sci. U. S. A. 91(1994) 12544-12548.
|
[64] |
M. Rashidian, J.K. Dozier, M.D. Distefano, Bioconjugate Chem. 24(2013) 1277-1294.
|
[65] |
C.B. Rosen, M.B. Francis, Nat. Chem. Biol. 13(2017) 697-705.
|
[66] |
D.B. Smithrud, P.A. Benkovic, S.J. Benkovic, et al., Proc. Natl. Acad. Sci. U. S. A. 97(2000) 1953-1958.
|
[67] |
K. Yazawa, K. Numata, Molecules 19(2014) 13755-13774.
|
[68] |
G.K.T. Nguyen, C.T.T. Wong, J. Biochem. Chem. Sci. 2017(2017) 1-13.
|
[69] |
X.L. Tan, L. Xu, J. Shi, et al., Prog. Chem. 26(2014) 1741-1751.
|
[70] |
R.A. Oliver, R. Li, C.A. Townsend, Nat. Chem. Biol. 14(2018) 5-7.
|
[71] |
M.I. Arif, A. Toplak, W. Szymanski, et al., Adv. Synth. Catal. 356(2014) 2197-2202.
|
[72] |
B. Wu, H.J. Wijma, L. Song, et al., ACS Catal. 6(2016) 5405-5414.
|
[73] |
S.K. Mazmanian, Science 285(1999) 760-763.
|
[74] |
H. Ton-That, G. Liu, S.K. Mazmanian, et al., Proc. Natl. Acad. Sci. U. S. A. 96(1999) 12424-12429.
|
[75] |
M. Ritzefeld, Chem. Eur. J. 20(2014) 8516-8529.
|
[76] |
L. Schmohl, D. Schwarzer, Curr. Opin. Chem. Biol. 22(2014) 122-128.
|
[77] |
W. van't Hof, S. Hansenova Manaskova, E.C. Veerman, et al., Biol. Chem. 396(2015) 283-293.
|
[78] |
J.M. Antos, M.C. Truttmann, H.L. Ploegh, Curr. Opin. Struct. Biol. 38(2016) 111-118.
|
[79] |
H. Mao, S.A. Hart, A. Schink, et al., J. Am. Chem. Soc. 126(2004) 2670-2671.
|
[80] |
M.W. Popp, J.M. Antos, G.M. Grotenbreg, et al., Nat. Chem. Biol. 3(2007) 707-708.
|
[81] |
G.T. Hess, J.J. Cragnolini, M.W. Popp, et al., Bioconjugate Chem. 23(2012) 1478-1487.
|
[82] |
L.K. Swee, C.P. Guimaraes, S. Sehrawat, et al., Proc. Natl. Acad. Sci. U. S. A. 110(2013) 1428-1433.
|
[83] |
B.M. Paterson, K. Alt, C.M. Jeffery, et al., Angew. Chem. Int. Ed. 53(2014) 6115-6119.
|
[84] |
T. Sakamoto, S. Sawamoto, T. Tanaka, et al., Bioconjugate Chem. 21(2010) 2227-2233.
|
[85] |
R. Parthasarathy, S. Subramanian, E.T. Boder, Bioconjugate Chem. 18(2007) 469-476.
|
[86] |
J.M. Antos, M.W. Popp, R. Ernst, et al., J. Biol. Chem. 284(2009) 16028-16036.
|
[87] |
J.G. Bolscher, M.J. Oudhoff, K. Nazmi, et al., FASEB J. 25(2011) 2650-2658.
|
[88] |
T. Ito, R. Sadamoto, K. Naruchi, et al., Biochemistry 49(2010) 2604-2614.
|
[89] |
C.P. Guimaraes, M.D. Witte, C.S. Theile, et al., Nat. Protoc. 8(2013) 1787-1799.
|
[90] |
C.S. Theile, M.D. Witte, A.E. Blom, et al., Nat. Protoc. 8(2013) 1800-1807.
|
[91] |
H. Hirakawa, S. Ishikawa, T. Nagamune, Biotechnol. J. 10(2015) 1487-1492.
|
[92] |
Y. Yamamura, H. Hirakawa, S. Yamaguchi, et al., Chem. Commun. 47(2011) 4742-4744.
|
[93] |
J.M. Antos, G.L. Chew, C.P. Guimaraes, et al., J. Am. Chem. Soc. 131(2009) 10800-10801.
|
[94] |
D.J. Williamson, M.A. Fascione, M.E. Webb, et al., Angew. Chem. Int. Ed. 51(2012) 9377-9380.
|
[95] |
F. Liu, E.Y. Luo, D.B. Flora, et al., J. Org. Chem. 79(2014) 487-492.
|
[96] |
Y.M. Li, Y.T. Li, M. Pan, et al., Angew. Chem. Int. Ed. 53(2014) 2198-2202.
|
[97] |
Z.M. Wu, S.Z. Liu, X.Z. Cheng, et al., Chin. Chem. Lett. 28(2017) 553-557.
|
[98] |
G.K.T. Nguyen, S. Wang, Y. Qiu, et al., Nat. Chem. Biol. 10(2014) 732-738.
|
[99] |
G.K.T. Nguyen, A. Kam, S. Loo, et al., J. Am. Chem. Soc. 137(2015) 15398-15401.
|
[100] |
X. Hemu, Y. Qiu, G.K.T. Nguyen, et al., J. Am. Chem. Soc.138(2016) 6968-6971.
|
[101] |
G.K.T. Nguyen, X. Hemu, J.-P. Quek, et al., Angew. Chem. Int. Ed. 55(2016) 12802-12806.
|
[102] |
Y. Cao, G.K.T. Nguyen, J.P. Tam, et al., Chem. Commun. 51(2015) 17289-17292.
|
[103] |
X. Bi, J. Yin, G.K.T. Nguyen, et al., Angew. Chem. Int. Ed. 56(2017) 7822-7825.
|
[104] |
G.K.T. Nguyen, Y. Cao, W. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 15694-15698.
|
[105] |
Y. Cao, G.K.T. Nguyen, S. Chuah, et al., Bioconjugate Chem. 27(2016) 2592-2596.
|
[106] |
G.K. Nguyen, Y. Qiu, Y. Cao, et al., Nat. Protoc. 11(2016) 1977-1988.
|
[107] |
E.W. Schmidt, J.T. Nelson, D.A. Rasko, et al., Proc. Natl. Acad. Sci. U. S. A. 102(2005) 7315-7320.
|
[108] |
J. Lee, J. McIntosh, B.J. Hathaway, et al., J. Am. Chem. Soc. 131(2009) 2122-2124.
|
[109] |
C.J. Barber, P.T. Pujara, D.W. Reed, et al., J. Biol. Chem. 288(2013) 12500-12510.
|
[110] |
H. Luo, S.Y. Hong, R.M. Sgambelluri, et al., Chem. Biol. 21(2014) 1610-1617.
|
[111] |
R. Yang, Y.H. Wong, G.K.T. Nguyen, et al., J. Am. Chem. Soc. 139(2017) 5351-5358.
|
[112] |
L. Abrahmsen, J. Tom, J. Burnier, et al., Biochemistry 30(1991) 4151-4159.
|
[113] |
A. Toplak, T. Nuijens, P.J.L.M. Quaedflieg, et al., Adv. Synth. Catal. 358(2016) 2140-2147.
|
[114] |
K. Piotukh, B. Geltinger, N. Heinrich, et al., J. Am. Chem. Soc. 133(2011) 17536-17539.
|
[115] |
T. Biswas, V.S. Pawale, D. Choudhury, et al., Biochemistry 53(2014) 2515-2524.
|
[116] |
K.D. Nikghalb, N.M. Horvath, J.L. Prelesnik, et al., Chembiochem 19(2018) 185-195.
|
[117] |
I. Chen, B.M. Dorr, D.R. Liu, Proc. Natl. Acad. Sci. U. S. A. 108(2011) 11399-11404.
|
[118] |
H. Hirakawa, S. Ishikawa, T. Nagamune, Biotechnol. Bioeng.109(2012) 2955-2961.
|
[119] |
P. Gianella, E.L. Snapp, M. Levy, Biotechnol. Bioeng. 113(2016) 1647-1657.
|
[120] |
K.S. Harris, T. Durek, Q. Kaas, et al., Nat. Commun. 6(2015) 10199.
|
[121] |
L.B. Evnin, C.S. Craik, Ann. N.Y. Acad. Sci. 542(1988) 61-74.
|
[122] |
S. Liebscher, M. Schopfel, T. Aumuller, et al., Angew. Chem. Int. Ed. 53(2014) 3024-3028.
|
[123] |
C. Meyer, S. Liebscher, F. Bordusa, Bioconjugate Chem. 27(2016) 47-53.
|
[124] |
S. Liebscher, P. Kornberger, G. Fink, et al., Chembiochem. 15(2014) 1096-1100.
|
[125] |
I. Svendsen, Carlsberg. Res. Commun. 41(1976) 237-291.
|
[126] |
C.-F. Liu, J.P. Tam, Org. Lett. 3(2001) 4157-4159.
|
[127] |
T. Nakatsuka, T. Sasaki, E.T. Kaiser, J. Am. Chem. Soc. 109(1987) 3808-3810.
|
[128] |
D. Jackson, J. Burnier, C. Quan, et al., Science 266(1994) 243-247.
|
[129] |
S.H. Henager, N. Chu, Z. Chen, et al., Nat. Methods 13(2016) 925-927.
|
[130] |
A. Toplak, T. Nuijens, P.J.L.M. Quaedflieg, et al., Adv. Synth. Catal. 358(2016) 2140-2147.
|
[131] |
C. Tuthill, Ann. N.Y. Acad. Sci. 1112(2007) 351-356.
|
[132] |
J. Li, C.H. Liu, F.S. Wang, Peptides 31(2010) 2151-2158.
|
[133] |
M. Schmidt, A. Toplak, H.J. Rozeboom, et al., Org. Biomol. Chem. 16(2018) 609-618.
|
[134] |
A.M. Weeks, J.A. Wells, Nat. Chem. Biol. 14(2018) 50-57.
|
[135] |
C.F.W. Becker, Nat. Chem. Biol. 14(2018) 2-3.
|
|
|
|