|
|
α-Fe2O3 immobilized benzimidazolium tribromide as novel magnetically retrievable catalyst for one-pot synthesis of highly functionalized piperidines |
Bappi Paula, Sethumathavan Vadivelb, Siddhartha Sankar Dhara |
a Department of Chemistry, National Institute of Technology Silchar, Silchar-788010, Assam, India;
b Department of Chemistry, PSG College of Technology, Peelamedu, Coimbatore-641004, Tamilnadu, India |
|
|
Abstract Nanostructured α-Fe2O3 were prepared by precipitation followed by calcination method.Cetyltrimethylammonium bromide (CTAB) was used as surfactant.The nano α-Fe2O3 was then silanized with (3-chloropropyl)-triethoxysilane (CPTES) by room temperature mixing of α-Fe2O3 and CPTES to produce silane coated α-Fe2O3(ClPr-Si@Fe2O3).As-synthesized ClPr-Si@Fe2O3 was functionalized via covalent grafting of benzimidazole to produce 3-(1-benzimidazole) Pr-Si@Fe2O3.This was further reacted with bromine to afford α-Fe2O3 immobilized benzimidazolium tribromide (α-Fe2O3-BIM tribromide).This ionic liquid (IL) α-Fe2O3 BIM tribromide was characterized by FT-IR,XRD,TEM,SEM,TGA,VSM,EDX and BET analysis.The as-synthesized IL tribromide was used as catalyst for one-pot synthesis of highly substituted piperidines.The method is greener in terms of solvent selection,recovery of the catalyst and efficiency.
|
Received: 11 May 2016
|
Corresponding Authors:
Bappi Paul, Siddhartha Sankar Dhar
E-mail: bappipaulnits@gmail.com;ssd_iitg@hotmail.com
|
|
|
|
[1] |
F. Shi, M.K. Tse, M.M. Pohl, et al., Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations, Angew. Chem. Int. Ed. 46(2007) 8866-8868.
|
[2] |
A.C. Garade, M. Bharadwaj, S.V. Bhagwat, A.A. Athawale, C.V. Rode, An efficient γ-Fe2O3 catalyst for liquid phase air oxidation of p-hydroxybenzyl alcohol under mild conditions, Catal. Commun. 10(2009) 485-489.
|
[3] |
H.N. Dadhania, D.K. Raval, A.N. Dadhania, Magnetically retrievable magnetite (Fe3O4) immobilized ionic liquid: an efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols, Catal. Sci. Technol. 5(2015) 4806-4812.
|
[4] |
B. Paul, B. Bhuyan, D.D. Purkayastha, S.S. Dhar, Facile synthesis of α-Fe2O3 nanoparticles and their catalytic activity in oxidation of benzyl alcohols with periodic acid, Catal. Commun. 69(2015) 48-54.
|
[5] |
T.K. Kundu, M. Mukherjee, D. Chakravorty, T.P. Sinha, Growth of nano-α-Fe2O3 in a titania matrix by the sol-gel route, J. Mater. Sci. 33(1998) 1759-1763.
|
[6] |
M.A. Bhosale, D. Ummineni, T. Sasaki, D. Nishio-Hamane, B.M. Bhanage, Magnetically separable γ-Fe2O3 nanoparticles: an efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition, J, Mol. Catal. A Chem. 404-405(2015) 8-17.
|
[7] |
P.M. Leó, C. Morin, C. Philouze, Structure revision of medermycin/lactoquinomycin A and of related C-8 glycosylated naphthoquinones, Org. Lett. 4(2002) 2711-2714.
|
[8] |
K. Tatsuta, H. Ozeki, M. Yamaguchi, M. Tanaka, T. Okui, Enantioselective total synthesis of medermycin (lactoquinomycin), Tetrahedron Lett. 31(1990) 5495-5498.
|
[9] |
H.R. Shaterian, K. Azizi, Acidic ionic liquids catalyzed one-pot, pseudo fivecomponent, and diastereoselective synthesis of highly functionalized piperidine derivatives, J, Mol. Liq. 180(2013) 187-191.
|
[10] |
H. Veisi, A. Sedrpoushan, P. Mohammadi, A.R. Faraji, S. Sajjadifar, A new recyclable 1,4-bis(3-methylimidazolium-1-yl)butane ditribromide[bMImB] (Br3)2 ionic liquid reagent for selective bromination of anilines or phenols and a-bromination of alkanones under mild conditions, RSC Adv. 4(2014) 25898-25903.
|
[11] |
J.P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis. 2, Chem. Rev. 111(2011) 3508-3576.
|
[12] |
T. Welton, Room-temperature ionic liquids, Solvents for synthesis and catalysis, Chem. Rev. 99(1999) 2071-2084.
|
[13] |
S. Otokesh, E. Kolvari, A. Amoozadeh, N. Koukabi, Magnetic nanoparticle-supported imidazole tribromide: a green, mild, recyclable and metal-free catalyst for the oxidation of sulfides to sulfoxides in the presence of aqueous hydrogen peroxide, RSC Adv. 5(2015) 53749-53756.
|
[14] |
R. Giernoth, Task-specific ionic liquids, Angew. Chem. Int. Ed 49(2010) 2834-2839.
|
[15] |
S.G. Lee, Functionalized imidazolium salts for task-specific ionic liquids and their applications, Chem. Commun. (2006) 1049-1063.
|
[16] |
J. Zhu, H. Bienayme, Multicomponent Reactions-Superior Chemistry Technology for the New Millennium, Wiley, Weinheim (2005).
|
[17] |
I. Ugi, Recent progress in the chemistry of multicomponent reactions, Pure Appl. Chem. 73(2001) 187-192.
|
[18] |
D.J. Ramón, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44(2005) 1602-1634.
|
[19] |
A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106(2006) 17-89.
|
[20] |
X.Y. Zhang, X.Y. Li, X.S. Fan, et al., A novel synthesis of pyrazolo[3,4-b]pyridine derivatives through multi-component reaction in ionic liquid,Chin. Chem. Lett. 19(2008) 153-156.
|
[21] |
A. Dömling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39(2000) 3168-3210.
|
[22] |
B.M. Trost, Atom economy-a challenge for organic synthesis: homogeneous catalysis leads the way, Angew. Chem. Int. Ed. 34(1995) 259-281.
|
[23] |
S.W. Pelletier, Alkaloids: Chemical and Biological Perspectives, John Wiley & Sons, New York, 1987.
|
[24] |
J.W. Daly, T.F. Spande, H.M. Garraffo, Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds, J. Nat. Prod. 68(2005) 1556-1575.
|
[25] |
P.S. Watson, B. Jiang, B. Scott, A diastereoselective synthesis of 2, 4-disubstituted piperidines: scaffolds for drug discovery, Org. Lett. 2(2000) 3679-3681.
|
[26] |
S. Petit, J.P. Nallet, M. Guillard, et al., Synthèses et activités psychotropes de 3,4-diarylpipéridines. Corrélation structure-activite et recherche d'une activité antihypertensive, Eur. J. Med. Chem. 26(1991) 19-32.
|
[27] |
Y.F. Zhou, V.E. Gregor, B.K. Ayida, et al., Synthesis and SAR of 3,5-diaminopiperidine derivatives: novel antibacterial translation inhibitors as aminoglycoside mimetics, Bioorg. Med. Chem. Lett. 17(2007) 1206-1210.
|
[28] |
M. Misra, S.K. Pandey, V.P. Pandey, et al., Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials, Bioorg. Med. Chem. 17(2009) 625-633.
|
[29] |
B. Ho, A.M. Crider, J.P. Stables, Synthesis and structure-activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores, Eur. J. Med. Chem. 36(2001) 265-286.
|
[30] |
T. Boehm, W. Stöcker, Über die Bildung von γ-piperidonderivaten aus Azetessigester, aromatischen Aldehyden und Aminen, eine Modifikation der Hantzsch schen Pyridinsynthese, Arch, Pharm. 281(1943) 62-77.
|
[31] |
C. Mukhopadhyay, S. Rana, R.J. Butcher, A.M. Schmiedekamp, First report of syn isomers in the diastereoselective synthesis of highly functionalized piperidines catalysed by wet picric acid: factors influencing the syn-anti ratios, Tetrahedron Lett. 52(2011) 5835-5840.
|
[32] |
S.S. Sajadikhah, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, S.J. Shams-Najafi, One-pot multicomponent synthesis of highly substituted piperidines using p-toluenesulfonic acid monohydrate as catalyst, Monatsh Chem. 143(2012) 939-945.
|
[33] |
A.T. Khan, T. Parvin, L.H. Choudhury, Effects of substituents in the β-Position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: a facile access to functionalized piperidines, J. Org. Chem. 73(2008) 8398-8402.
|
[34] |
A.T. Khan, M. Lal, M.M. Khan, Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB), Tetrahedron Lett. 51(2010) 4419-4424.
|
[35] |
A.T. Khan, M.M. Khan, K.K.R. Bannuru, Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines, Tetrahedron 66(2010) 7762-7772.
|
[36] |
N.R. Agrawal, S.P. Bahekar, P.B. Sarode, S.S. Zade, H.S. Chandak, L-Proline nitrate: a recyclable and green catalyst for the synthesis of highly functionalized piperidines, RSC Adv. 5(2015) 47053-47059.
|
[37] |
B. Paul, D.D. Purkayastha, S.S. Dhar, S. Das, S. Haldar, Facile one-pot strategy to prepare Ag/Fe2O3 decorated reduced graphene oxide nanocomposite and its catalytic application in chemoselective reduction of nitroarenes, J. Alloys Compd. 681(2016) 316-323.
|
[38] |
B. Paul, B. Bhuyan, D.D. Purkayastha, S.S. Dhar, B.K. Patel, Hexamethonium bis(tribromide) (HMBTB) a recyclable and high bromine containing reagent, Tetrahedron Lett. 56(2015) 5646-5650.
|
[39] |
R.R. Dey, B. Paul, S.S. Dhar, Novel metal- and mineral-acid-free synthesis of organic ammonium tribromides and application of ethylenephenanthrolium bistribromide for bromination of active methylene group of 1,3-diketones and b-ketoesters, Synth. Commun. 45(2015) 714-726.
|
[40] |
R.R. Dey, B. Paul, S.S. Dhar, S. Bhattacharjee, Novel protocol for the synthesis of organic ammonium tribromides and investigation of 1,1'-(Ethane-1,2-diyl)dipiperidinium bis(tribromide) in the silylation of alcohols and thiols, Chem. Lett. 43(2014) 1545-1547.
|
[41] |
U. Bora, G. Bose, M.K. Chaudhuri, et al., Regioselective bromination of organic substrates by tetrabutylammonium bromide promoted by V2O5 H2O2: an environmentally favorable synthetic protocol, Org. Lett. 2(2000) 247-249.
|
[42] |
M.K. Choudhuri, U. Bora, S.K. Dehury, et al., Process for preparing quaternary ammonium tribromides, US 7005548B2.
|
[43] |
B. Paul, B. Bhuyan, D.D. Purkayastha, S.S. Dhar, Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities, J. Mol. Liq. 212(2015) 813-817.
|
[44] |
R. Zboril, M. Mashlan, D. Petridis, Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, mössbauer spectroscopy characterization, and applications,Chem. Mater. 14(2002) 969-982.
|
[45] |
F.Z. Mou, J.G. Guan, Z.D. Xiao, et al., Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/(-phase-shell hierarchical nanostructures with strong As(V) removal capability, J. Mater. Chem. 21(2011) 5414-5421.
|
|
|
|