|
|
Stable pillar [5] arene-based pseudo [1] rotaxanes formed in polar solution |
Xuan Wu, Lei Gao, Junzhao Sun, Xiao-Yu Hu, Leyong Wang |
Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China |
|
|
Abstract Mono-alkyl-functionalized pillar[5] arenes P1,P2,and P3 were synthesized by click reaction,which exhibited different self-assembly behavior in polar solvent DMSO.Stable pseudo [1] rotaxane was formed by the self-complexation from P1 or P2,whereas,concentration-dependent pseudorotaxane structures were generated by P3 which bearing more flexible side chain.Interestingly,the obtained pseudo[1] rotaxanes exhibited a dynamic fast assembly process upon adding NaBF4,resulting in the formation of Na+-induced pseudorotaxanes.
|
Received: 23 February 2016
|
Fund:We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21472089, 21572101), and the National Natural Science Foundation of Jiangsu (No. BK20140595). |
Corresponding Authors:
Xiao-Yu Hu
E-mail: huxy@nju.edu.cn
|
|
|
|
[1] |
C.J. Bruns, J.F. Stoddart, Rotaxane-based molecular muscles, Acc. Chem. Res. 47(2014) 2186-2199.
|
[2] |
L. Liu, Y. Liu, P. Liu, et al., Phosphine oxide functional group based three-station molecular shuttle, Chem. Sci. 4(2013) 1701-1706.
|
[3] |
A. Credi, V. Balzani, S.J. Langford, J.F. Stoddart, Logic operations at the molecular level. An XOR gate based on a molecular machine, J. Am. Chem. Soc. 119(1997) 2679-2681.
|
[4] |
C. Gao, X. Ma, Q. Zhang, et al., A light-powered stretch-contraction supramolecular system based on cobalt coordinated[1] rotaxane, Org. Biomol. Chem. 9(2011) 1126-1132.
|
[5] |
L. Liu, Q. Wang, M. Cheng, et al., A ferrocene-functionalized bistable [2] rotaxane with switchable fluorescence, Asian J. Org. Chem. 4(2015) 221-225.
|
[6] |
M. Gangopadhyay, A.K. Mandal, A. Maity, et al., Tuning emission responses of a triphenylamine derivative in host-guest complexes and an unusual dynamic inclusion phenomenon, J. Org. Chem. 81(2016) 512-521.
|
[7] |
A.K. Mandal, M. Suresh, M.K. Kesharwani, et al., Molecular interactions, proton exchange, and photoinduced processes prompted by an inclusion process and a [2] pseudorotaxane formation, J. Org. Chem. 78(2013) 9004-9012.
|
[8] |
R. Barat, T. Legigan, I. Tranoy-Opalinski, et al., A mechanically interlocked molecular system programmed for the delivery of an anticancer drug, Chem. Sci. 6(2015) 2608-2613.
|
[9] |
J.D. Badjic, V. Balzani, A. Credi, S. Silvi, J.F. Stoddart, A molecular elevator, Science 303(2004) 1845-1849.
|
[10] |
B. Lewandowski, G. De Bo, J.W. Ward, et al., Sequence-specific peptide synthesis by an artificial small-molecule machine, Science 339(2013) 189-193.
|
[11] |
S. Erbas-Cakmak, D.A. Leigh, C.T. McTernan, A.L. Nussbaumer, Artificial molecular machines, Chem. Rev. 115(2015) 10081-10206.
|
[12] |
S.H. Li, H.Y. Zhang, X. Xu, Y. Liu, Mechanically selflocked chiral gemini-catenanes, Nat. Commun. 6(2015) 7590-7596.
|
[13] |
S. Saha, K.C.F. Leung, T.D. Nguyen, J.F. Stoddart, J. Zink, Nanovalves, Adv. Funct. Mater 17(2007) 685-693.
|
[14] |
A.C. Fahrenbach, S.C. Warren, J.T. Incorvati, et al., Organic switches for surfaces and devices, Adv. Mater. 25(2013) 331-348.
|
[15] |
D.B. Amabilino, J.F. Stoddart, Interlocked and intertwined structures and superstructures, Chem. Rev. 95(1995) 2725-2828.
|
[16] |
D.H. Qu, Q.C. Wang, Q.W. Zhang, X. Ma, H. Tian, Photoresponsive host-guest functional systems, Chem. Rev. 115(2015) 7543-7588.
|
[17] |
M. Xue, Y. Yang, X. Chi, X. Yan, F. Huang, Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications, Chem. Rev. 115(2015) 7398-7501.
|
[18] |
D.B. Smithrud, E.M. Sanford, I. Chao, et al., Solvent effects in molecular recognition, Pure Appl. Chem. 62(1990) 2227-2236.
|
[19] |
P.R. Ashton, I. Baxter, M.C.T. Fyfe, et al., Rotaxane or pseudorotaxane? That is the question!, J. Am. Chem. Soc. 120(1998) 2297-2307.
|
[20] |
M. Ni, Y. Guan, L. Wu, et al., Improved recognition of alkylammonium salts by ion pair recognition based on a novel heteroditopic pillar [5] arene receptor, Tetrahedron Lett. 53(2012) 6409-6413.
|
[21] |
G. Yu, C. Han, Z. Zhang, et al., Pillar [6] arene-based photoresponsive host-guest complexation, J. Am. Chem. Soc. 134(2012) 8711-8717.
|
[22] |
Y. Inoue, P. Kuad, Y. Okumura, et al., Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end, J. Am. Chem. Soc. 129(2007) 6396-6397.
|
[23] |
Y. Chen, D. Cao, L. Wang, et al., Monoester copillar [5] arenes: synthesis, unusual self-inclusion behavior, and molecular recognition, Chem. Eur. J. 19(2013) 7064-7070.
|
[24] |
Y. Guan, P. Liu, C. Deng, et al., Dynamic self-inclusion behavior of pillar [5] arenebased pseudo[1] rotaxanes, Org. Biomol. Chem. 12(2014) 1079-1089.
|
[25] |
M. Ni, X.Y. Hu, J. Jiang, L. Wang, The self-complexation of mono-ureafunctionalized pillar [5] arenes with abnormal urea behaviors, Chem. Commun. 50(2014) 1317-1319.
|
[26] |
T. Ogoshi, K. Demachi, K. Kitajima, T.A. Yamagishi, Monofunctionalized pillar [5] -arenes: synthesis and supramolecular structure, Chem. Commun. 47(2011) 7164-7166.
|
[27] |
N.L. Strutt, H. Zhang, M.A. Giesener, J. Lei, J.F. Stoddart, A self-complexing and selfassembling pillar [5] arene, Chem. Commun. 48(2012) 1647-1649.
|
[28] |
C.L. Sun, J.F. Xu, Y.Z. Chen, et al., Monofunctionalized pillar [5] arene-based stable[1] pseudorotaxane, Chin. Chem. Lett. 26(2015) 843-846.
|
[29] |
X. Wu, M. Ni, W. Xia, X.Y. Hu, L. Wang, A novel dynamic pseudo[1] rotaxane based on a mono-biotin-functionalized pillar [5] arene, Org. Chem. Front. 2(2015) 1013-1017.
|
[30] |
K.D. Hanni, D.A. Leigh, The application of CuAAC ‘click’ chemistry to catenane and rotaxane synthesis, Chem. Soc. Rev. 39(2010) 1240-1251.
|
[31] |
K. Wang, C.Y. Wang, Y. Zhang, et al., Ditopic pillar [5] arene-based fluorescence enhancement material mediated by[c2] daisy chain formation, Chem. Commun. 50(2014) 9458-9461.
|
[32] |
S.K. Kim, J.L. Sessler, Calix [4] pyrrole-based ion pair receptors, Acc. Chem. Res. 47(2014) 2525-2536.
|
|
|
|