|
|
Gold nanoparticles/carbon nanotubes composite microspheres for catalytic reduction of 4-nitrophenol |
Sheng Liu, Xiao-Lin Zhou, Meng-Meng Zhang, Xuan Lu, Yu-Jun Qin, Pu Zhang, Zhi-Xin Guo |
Department of Chemistry, Renmin University of China, Beijing 100872, China |
|
|
Abstract The layer-by-layer assembly of polyethyleneimine and carbon nanotubes is carried out through the electrostatic interactions on colloidal polystyrene templates. The successful spherical growth of polyethyleneimine/carbon nanotube multilayers could be investigated by SEM. The subsequent in situ preparation and deposition of gold nanoparticles on the core-shell composites could yield novel microsphere complexes, which are characterized by SEM, TEM, EDX and XRD. The functional hierarchical microspheres with gold nanoparticles exhibit good catalytic activity in the reaction of reducing 4-nitrophenol to 4-aminophenol.
|
Received: 19 October 2015
Published: 27 January 2016
|
Fund:This work was supported by the National Natural Science Foundation of China (Nos. 21173266 and 21473250) and the Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University of China (Nos. 11XNJ021 and 15XNLQ04). |
Corresponding Authors:
Yu-Jun Qin, Zhi-Xin Guo
E-mail: yjqin@ruc.edu.cn;gzhixin@ruc.edu.cn
|
|
|
|
[1] |
J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres, Nat. Mater. 14 (2015) 763-774.
|
[2] |
J. Hong, J.Y. Han, H. Yoon, et al., Carbon-based layer-by-layer nanostructures: from films to hollow capsules, Nanoscale 3 (2011) 4515-4531.
|
[3] |
X. Zhang, H. Chen, H.Y. Zhang, Layer-by-layer assembly: from conventional to unconventional methods, Chem. Commun. (2007) 1395-1405.
|
[4] |
M. Sano, A. Kamino, J. Okamura, S. Shinkai, Noncovalent self-assembly of carbon nanotubes for construction of "cages", Nano Lett. 2 (2002) 531-533.
|
[5] |
M.A. Correa-Duarte, A. Kosiorek, W. Kandulski, M. Giersig, L.M. Liz-Marzán, Layerby-layer assembly of multiwall carbon nanotubes on spherical colloids, Chem. Mater. 17 (2005) 3268-3272.
|
[6] |
L.J. Ji, J. Ma, C.G. Zhao, et al., Porous hollow carbon nanotube composite cages, Chem. Commun. (2006) 1206-1208.
|
[7] |
M.X. Tang, Y.J. Qin, Y.Y. Wang, Z.X. Guo, Hollow carbon nanotube microspheres and hemimicrospheres, J. Phys. Chem. C 113 (2009) 1666-1671.
|
[8] |
J.W. Cui, Y.Q. Liu, J.C. Hao, Multiwalled carbon-nanotube-embedded microcapsules and their electrochemical behavior, J. Phys. Chem. C 113 (2009) 3967-3972.
|
[9] |
A.L. Xiong, X. Lu, Y.M. Ma, et al., Cross-linked multilayer composite films and microcapsules embedded carbon nanotubes, Mater. Lett. 105 (2013) 132-135.
|
[10] |
K.W. Shu, Y.J. Qin, H.X. Luo, P. Zhang, Z.X. Guo, Preparation of carbon nanotube/chitosan/gold nanoparticle composite microspheres, Mater. Lett. 65 (2011) 1510-1513.
|
[11] |
H.H. Yu, T. Cao, L.D. Zhou, et al., Layer-by-layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films, Sens. Actuators B Chem. 119 (2006) 512-515.
|
[12] |
Y.J. Qin, Y.Y. Wang, M.X. Tang, Z.X. Guo, Layer-by-layer electrostatic self-assembly of anionic and cationic carbon nanotubes, Chin. Chem. Lett. 21 (2010) 876-879.
|
[13] |
X.G. Hu, T. Wang, X.H. Qu, S.J. Dong, In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials, J. Phys. Chem. B 110 (2006) 853-857.
|
[14] |
M.Y. Chen, L.H. Dong, M.J. Han, et al., Preparation and characterization of polystyrene/silver core/shell composite microspheres, J. Mol. Sci. 30 (2014) 383-389.
|
[15] |
E. Lorençon, D.C. Ferreira, R.R. Resende, K. Krambrock, Amphiphilic gold nanoparticles supported on carbon nanotubes: catalysts for the oxidation of lipophilic compounds by wet peroxide in biphasic systems, Appl. Catal. A Gen. 505 (2015) 566-574.
|
[16] |
R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Supported metal nanoparticles on porous materials, methods and applications, Chem. Soc. Rev. 38 (2009) 481-494.
|
[17] |
P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A Gen. 253 (2003) 337-358.
|
[18] |
H.T. Wang, Z.X. Dong, C.Z. Na, Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol, ACS Sustain. Chem. Eng. 1 (2013) 746-752.
|
[19] |
X.Z. Wang, J.W. Fu, M.H. Wang, et al., Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol, J. Mater. Sci. 49 (2014) 5056-5065.
|
[20] |
F. Yang, C.X. Wang, L.N. Wang, et al., Au/graphene oxide/carbon nanotube flexible catalyst film: synthesis, characterization and its application for catalytic reduction of 4-nitrophenol, RSC Adv. 5 (2015) 37710-37715.
|
[21] |
S. Praharaj, S. Nath, S.K. Ghosh, S. Kundu, T. Pal, Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol, Langmuir 20 (2004) 9889-9892.
|
[22] |
M.H. Rashid, R.R. Bhattacharjee, A. Kotal, T.K. Mandal, Synthesis of spongy gold nanocrystals with pronounced catalytic activities, Langmuir 22 (2006) 7141-7143.
|
[23] |
Z.Y. Zhang, C.L. Shao, P. Zou, et al., In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol, Chem. Commun. 47 (2011) 3906-3908.
|
[24] |
J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol, J. Mater. Chem. 22 (2012) 8426-8430.
|
[25] |
E. Kan, L. Kuai, W.H. Wang, B.Y. Geng, Delivery of highly active noble-metal nanoparticles into microspherical supports by an aerosol-spray method, Chem. Eur. J. 21 (2015) 13291-13296.
|
|
|
|