|
|
Pleated polymeric foldamers driven by donor–acceptor interaction and conjugated radical cation dimerization |
Yun-Chang Zhang, Lan Chen, Hui Wang, Ya-Ming Zhou, Dan-Wei Zhang, Zhan-Ting Li |
Department of Chemistry, Fudan University, Shanghai 200433, China |
|
|
Abstract Two naphthalene (NP) and bipyridinium (BIPY2+) alternately incorporated polymers P1 and P2 have been prepared through the formation of dynamic hydrazone bonds. The polymers formed NP-BIPY2+ donor-acceptor interaction-induced pleated secondary structure. Upon reducing the BIPY2+ units to radical cation BIPY·+, intramolecular dimerization of the BIPY·+ units induced the backbones to afford another pleated secondary structure. Adding electron-rich macrocyclic polyether bis-1,5-dinaphtho[38]crown-10 or electron-deficient cyclobis(paraquat-p-phenylene) cyclophane did not break the first foldamer by complexing the BIPY2+ or NP units of the polymers, whereas the di(radical cationic) ring of the second cyclophane could break the second foldamer by forming threading complexes with the BIPY·+ units of the polymers.
|
Received: 15 February 2016
Published: 02 April 2016
|
Fund:This work was financially supported by The Ministry of Science and Technology of China (No. 2013CB834501), The Science and Technology Commission of Shanghai Municipality (No. 13M1400200), The Ministry of Education of China research fund for the doctoral program, and the National Natural Science Foundation of China (Nos. 21432004 and 21472023). |
Corresponding Authors:
Dan-Wei Zhang, Zhan-Ting Li
E-mail: zhangdw@fudan.edu.cn;ztli@fudan.edu.cn
|
|
|
|
[1] |
(a) S. Hecht, I. Huc (Eds.), Foldamers: Structure, Properties and Applications, Wiley-VCH, Weinheim, Germany, 2007, p. 456;
|
(b) |
S.H. Gellman, Foldamers: a manifesto, Acc. Chem. Res. 31 (1998) 173-180;v(c) D.J. Hill, M.J. Mio, R.B. Prince, T.S. Hughes, J.S. Moore, A field guide to foldamers, Chem. Rev. 101 (2001) 3893-4012;
|
(d) |
B. Gong, Crescent oligoamides: from acyclic "Macrocycles" to folding nanotubes, Chem. Eur. J. 7 (2001) 4336-4342;
|
(e) |
Z.T. Li, Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks, Beilstein J. Org. Chem. 11 (2015) 2057-2071.
|
[2] |
(a) Z.T. Li, J.L. Hou, C. Li, Peptide mimics by linear arylamides: a structural and functional diversity test, Acc. Chem. Res. 41 (2008) 1343-1353;
|
(b) |
B. Gong, Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization, Acc. Chem. Res. 41 (2008) 1376-1386;
|
(c) |
X. Li, Y.D. Wu, D. Yang, a-Aminoxy acids: new possibilities from foldamers to anion receptors and channels, Acc. Chem. Res. 41 (2008) 1428-1438;
|
(d) |
G.N. Tew, R.W. Scott, M.L. Klein, W.F. De Grado, De Novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications, Acc. Chem. Res. 43 (2010) 30-39;
|
(e) |
D.W. Zhang, X. Zhao, J.L. Hou, Z.T. Li, Aromatic amide foldamers: structures, properties, and functions, Chem. Rev. 112 (2012) 5271-5376;
|
(f) |
H. Fu, Y. Liu, H. Zeng, Shape-persistent H-bonded macrocyclic aromatic pentamers, Chem. Commun. 49 (2013) 4127-4144;
|
g) |
Y. Zhao, K. Cho, L. Widanapathirana, S. Zhang, Conformationally controlled oligocholate membrane transporters: learning through water play, Acc. Chem. Res. 46 (2013) 2763-2772;
|
(h) |
D.W. Zhang, W.K. Wang, Z.T. Li, Hydrogen-bonding-driven aromatic foldamers: their structural and functional evolution, Chem. Rec. 15 (2015) 233-251.
|
[3] |
E. Kolomiets, V. Berl, J.M. Lehn, Chirality induction and protonation-induced molecular motions in helical molecular strands, Chem. Eur. J. 13 (2007) 5466-5479.
|
[4] |
H.Y. Hu, J.F. Xiang, Y. Yang, C.F. Chen, Chiral induction in phenanthroline-derived oligoamide foldamers: an acid-and base-controllable switch in helical molecular strands, Org. Lett. 10 (2008) 1275-1278.
|
[5] |
R.S. Lokey, B.L. Iverson, Synthetic molecules that fold into a pleated secondary structure in solution, Nature 375 (1995) 303-305.
|
[6] |
(a) S. Ghosh, S. Ramakrishnan, Aromatic donor-acceptor charge-transfer and metal-ion-complexation-assisted folding of a synthetic polymer, Angew. Chem. Int. Ed. 43 (2004) 3264-3268;
|
(b) |
S. Ghosh, S. Ramakrishnan, Small-molecule-induced folding of a synthetic polymer, Angew. Chem. Int. Ed. 44 (2005) 5441-5447;
|
(c) |
K. Liu, X. Zheng, A.Z. Samuel, et al., Stretching single polymer chains of donor-acceptor foldamers: toward the quantitative study on the extent of folding, Langmuir 29 (2013) 14438-14443.
|
[7] |
X. Zhao, M.X. Jia, X.K. Jiang, et al., Zipper-featured d-peptide foldamers driven by donor-acceptor interaction. Design, synthesis, and characterization, J. Org. Chem. 69 (2004) 270-279.
|
[8] |
Y.X. Xu, X. Zhao, X.K. Jiang, Z.T. Li, Folding of aromatic amide-based oligomers induced by benzene-1,3,5-tricarboxylate anion in DMSO, J. Org. Chem. 74 (2009) 7267-7273.
|
[9] |
Y. Wang, J. Xiang, H. Jiang, Halide-guided oligo(aryl-triazole-amide)s foldamers: receptors for multiple halide ions, Chem. Eur. J. 17 (2011) 613-619.
|
[10] |
K.P. McDonald, Y. Hua, S. Lee, A.H. Flood, Shape persistence delivers lock-and-key chloride binding in triazolophanes, Chem. Commun. 48 (2012) 5065-5075.
|
[11] |
C. Sun, C. Ren, Y. Wei, B. Qin, H. Zeng, Patterned recognition of amines and ammonium ions by a stimuli-responsive foldamer-based hexameric oligophenol host, Chem. Commun. 49 (2013) 5307-5309.
|
[12] |
L. Cera, C.A. Schalley, Stimuli-induced folding cascade of a linear oligomeric guest chain programmed through cucurbit[n]uril self-sorting (n = 6, 7, 8), Chem. Sci. 5 (2014) 2560-2567.
|
[13] |
R.M. Meudtner, M. Ostermeier, R. Goddard, C. Limberg, S. Hecht, Multifunctional "Clickates" as versatile extended heteroaromatic building blocks: efficient synthesis via click chemistry, conformational preferences, and metal coordination, Chem. Eur. J. 13 (2007) 9834-9840.
|
[14] |
Z. Yu, S. Hecht, Reversible and quantitative denaturation of amphiphilic oligo(azobenzene) foldamers, Angew. Chem. Int. Ed. 50 (2011) 1640-1643.
|
[15] |
A. Khan, C. Kaiser, S. Hecht, Prototype of a photoswitchable foldamer, Angew. Chem. Int. Ed. 45 (2006) 1878-1881.
|
[16] |
Y. Wang, F. Bie, H. Jiang, Controlling binding affinities for anions by a photoswitchable foldamer, Org. Lett. 12 (2010) 3630-3633.
|
[17] |
S. Lee, Y. Hua, A.H. Flood, b-sheet-like hydrogen bonds interlock the helical turns of a photoswitchable foldamer to enhance the binding and release of chloride, J. Org. Chem. 79 (2014) 8383-8396.
|
[18] |
Y. Hua, A.H. Flood, Flipping the switch on chloride concentrations with a lightactive foldamer, J. Am. Chem. Soc. 132 (2010) 12838-12840.
|
[19] |
(a) Z. Yu, S. Hecht, Cooperative switching events in azobenzene foldamer denaturation, Chem. Eur. J. 18 (2012) 10519-10524;
|
(b) |
Z. Yu, S. Hecht, Control over unfolding pathways by localizing photoisomerization events within heterosequence oligoazobenzene foldamers, Angew. Chem. Int. Ed. 52 (2013) 13740-13744;
|
(c) |
Z. Yu, S. Weidner, T. Risse, S. Hecht, The role of statistics and microenvironment for the photoresponse in multi-switch architectures: the case of photoswitchable oligoazobenzene foldamers, Chem. Sci. 4 (2013) 4156-4167.
|
[20] |
D. Siebler, M. Linseis, T. Gasi, et al., Oligonuclear ferrocene amides: mixed-valent peptides and potential redox-switchable foldamers, Chem. Eur. J. 17 (2011) 4540-4551.
|
[21] |
E. Kosower, J. Cotter, Stable free radicals. II. The reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical, J. Am. Chem. Soc. 86 (1964) 5524-5527.
|
[22] |
(a) D.W. Zhang, J. Tian, L. Chen, L. Zhang, Z.T. Li, Dimerization of conjugated radical cations: an emerging non-covalent interaction for self-assembly, Chem. Asian J. 10 (2015) 56-68;
|
(b) |
L. Chen, Y.C. Zhang, W.K. Wang, et al., Conjugated radical cation dimerizationdriven generation of supramolecular architectures, Chin. Chem. Lett. 26 (2015) 811-816;
|
(c) |
H. Wang, D.W. Zhang, X. Zhao, Z.T. Li, Supramolecular organic frameworks (SOFs): water-phase periodic porous self-assembled architectures, Acta Chim. Sin. 73 (2015) 471-479;
|
(d) |
Z.T. Li, Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks, Beilstein J. Org. Chem. 11 (2015) 2057-2071;
|
(e) |
T.Q. Wan, Z.T. Li, From supramolecular polymers to supramolecular organic frameworks: engineering the periodicity of solution-phase self-assembled architectures, Imag. Sci. Photochem. 33 (2015) 3-14;
|
(f) |
L. Zhang, T.Y. Zhou, J. Tian, et al., A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit
|
[8] |
uril, Polym. Chem. 5 (2014) 4715-4721.
|
[23] |
Y. Wang, M. Frasconi, W.G. Liu, et al., Folding of oligoviologens induced by radical-radical interactions, J. Am. Chem. Soc. 137 (2015) 876-885.
|
[24] |
L. Chen, H. Wang, D.W. Zhang, Y. Zhou, Z.T. Li, Quadruple switching on pleated foldamers of tetrathiafulvalene-bipyridinium-alternating dynamic covalent polymers, Angew. Chem. Int. Ed. 54 (2015) 4028-4031.
|
[25] |
Y.C. Zhang, D.W. Zhang, H. Wang, Y. Zhou, Z.T. Li, Bipyridinium radical cation dimerization-driven polymeric pleated foldamers and a homoduplex that undergo ion-tuned interconversion, Polym. Chem. 6 (2015) 4404-4408.
|
[26] |
B. Chen, U. Baumeister, G. Pelzl, et al., Carbohydrate rod conjugates: ternary rod coil molecules forming complex liquid crystal structures, J. Am. Chem. Soc. 127 (2005) 16578-16591.
|
[27] |
P.R. Ashton, E.J.T. Chrystal, J.P. Mathias, et al., Complexation of diquat and paraquat by macrocyclic polyethers incorporating two dibydroxynaphthalene residues, Tetrahedron Lett. 28 (1987) 6367-6370.
|
[28] |
P.L. Anelli, P.R. Ashton, R. Ballardini, et al., Molecular meccano. 1.
|
[2] |
rotaxanes and a
|
[2] |
catenane made to order, J. Am. Chem. Soc. 114 (1992) 193-218.
|
[29] |
(a) M. Hadeh, A.C. Fahrenbach, S. Basu, et al., Electrostatic barriers in rotaxanes and pseudorotaxanes, Chem. Eur. J. 17 (2011) 6076-6087;
|
(b) |
H. Li, Y.L. Zhao, A.C. Fahrenbach, et al., Degenerate
|
[2] |
rotaxanes with electrostatic barriers, Org. Biomol. Chem. 9 (2011) 2240-2250.
|
[30] |
H. Li, Z. Zhu, A.C. Fahrenbach, et al., Mechanical bond-induced radical stabilization, J. Am. Chem. Soc. 135 (2013) 456-467.
|
|
|
|