|
|
Determination of primary aromatic amines using immobilized nanoparticles based surface-enhanced Raman spectroscopy |
Ting Wua, Hai-Ting Wangb, Bo Shenb, Yi-Ping Dua, Xuan Wanga, Zhen-Ping Wanga, Chuan-Jing Zhanga, Wen-Bin Miub |
a Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China;
b Technical Center for Industrial Products and Raw Materials Inspection and Testing, Shanghai Entry-Exit Inspection & Inspection and Quarantine Bureau, Shanghai 200135, China |
|
|
Abstract Primary aromatic amines (PAAs) are substances with toxicity and suspected human carcinogenicity. A facile method for highly sensitive detection of PAAs using surface-enhanced Raman spectroscopy (SERS) is reported. The immobilization of Au nanoparticles (AuNPs) on the glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) materials makes the substrate a closely packed but not aggregated Au NP arrays which provides a prominent SERS enhancement. Four PAAs with different substituent groups, namely, p-toluidine, p-nitroaniline, benzidine and 4,4-methylene-bis-(2-chloroaniline) have been successfully identified and quantified. High sensitivity and good linear relationship between SERS signals and concentrations of PAAs are obtained for all four PAAs.
|
Received: 08 May 2015
Published: 11 February 2016
|
Fund:This work was supported by the National Natural Science Foundation of China (No. 21205041), the Fundamental Research Funds for the Central Universities (No. 222201314039), General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (No. 2014IK077), Shanghai Inspection & Inspection and Quarantine Bureau (No. HK012-2015) and a grant of Laboratory team construction program for universities in Shanghai. |
Corresponding Authors:
Ting Wu
E-mail: wu_ting@ecust.edu.cn
|
|
|
|
[1] |
R.J. Turesky, L. Le Marchand, Metabolismand biomarkers of heterocyclic aromatic amines in molecular epidemiology studies:lessons learned from aromatic amines, Chem. Res. Toxicol. 24(2011) 1169-1214.
|
[2] |
P. Silar, J. Dairou, A. Cocaign, et al., Fungi as a promising tool for bioremediation of soils contaminated with aromatic amines, a major class of pollutants, Nat. Rev. Microbiol. 9(2011) 477.
|
[3] |
Y.C. Fan, Z.L. Hu, M.L. Chen, C.S. Tu, Y. Zhu, Ionic liquid based dispersive liquidliquid microextraction of aromatic amines in water samples, Chin. Chem. Lett. 19(2008) 985-987.
|
[4] |
Centers for Disease Control and Prevention (CDC), NIOSH pocket guide to chemical hazards, GA, 1992.
|
[5] |
International Agency for Research on Cancer (IARC), IARC monographs on the evaluation of carcinogenic risks to humans, Lyon, 2015.
|
[6] |
J. Schubert, O. Kappenstein, A. Luch, T.G. Schulz, Analysis of primary aromatic amines in the mainstream waterpipe smoke using liquid chromatography-electrospray ionization tandem mass spectrometry, J. Chromatogr. A 1218(2011) 5628-5637.
|
[7] |
B. Jurado-Sánchez, E. Ballesteros, M. Gallego, Gas chromatographic determination of N-nitrosamines, aromatic amines, and melamine in milk and dairy products using an automatic solid-phase extraction system, J. Agric. Food Chem. 59(2011) 7519-7520.
|
[8] |
M. Aznar, E. Canellas, C. Nerín, Quantitative determination of 22 primary aromatic amines by cation-exchange solid-phase extraction and liquid chromatography-mass spectrometry, J. Chromatogr. A 1216(2009) 5176-5181.
|
[9] |
C. Brede, I. Skjevrak, H. Herikstad, Determination of primary aromatic amines in water food simulant using solid-phase analytical derivatization followed by gas chromatography coupled with mass spectrometry, J. Chromatogr. A 983(2003) 35-42.
|
[10] |
R.R. Krishna, C.S.P. Sastry, A new spectrophotometric method for the determination of primary aromatic amines, Talanta 26(1979) 861-865.
|
[11] |
J.T. Stewart, T.D. Shaw, A.B. Ray, Spectrophotometric determination of primary aromatic amines with 9-chloroacridine, Anal. Chem. 41(1969) 360-362.
|
[12] |
S.K. Mortensen, X.T. Trier, A. Foverskov, J.H. Petersen, Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry, J. Chromatogr. A 1091(2005) 40-50.
|
[13] |
D. Pezo, M. Fedeli, O. Bosetti, C. Nerín, Aromatic amines from polyurethane adhesives in food packaging:the challenge of identification and pattern recognition using quadrupole-time of flight-mass spectrometry, Anal. Chim. Acta 756(2012) 49-59.
|
[14] |
F. Akbarian, B.S. Dunn, J.I. Zink, Surface-enhanced Raman spectroscopy using photodeposited gold particles in porous sol-gel silicates, J. Phys. Chem. 99(1995) 3892-3894.
|
[15] |
V. Iancu, L. Baia, N. Tarcea, J. Popp, M. Baia, Towards TiO2-Ag porous nanocomposites based SERS sensors for chemical pollutant detection, J. Mol. Struct. 1073(2014) 51-57.
|
[16] |
X.X. Zou, R. Silva, X.X. Huang, J.F. Al-Sharab, T. Asefa, A self-cleaning porous TiO2-Ag core-shell nanocomposite material for surface-enhanced Raman scattering, Chem. Commun. 49(2013) 382-384.
|
[17] |
Q.Q. Li, Y.P. Du, Y. Xu, et al., Rapid and sensitive detection of pesticides by surfaceenhanced Raman spectroscopy technique based on glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material, Chin. Chem. Lett. 24(2013) 332-334.
|
[18] |
F. Svec, J.M.J. Frechet, Continuous rods of macroporous polymer as high-performance liquid chromatography separation media, Anal. Chem. 64(1992) 820-822.
|
[19] |
C.L. Yang, Y.L. Wei, Q.H. Zhang, et al., Preparation and evaluation of a large-volume radial flow monolithic column, Talanta 66(2005) 472-478.
|
[20] |
K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Preparation and characterization of Au colloid monolayers, Anal. Chem. 67(1995) 735-743.
|
[21] |
M. Karnan, V. Balachandran, M. Murugan, FT-IR, Raman and DFT study of 5-chloro-4-nitro-o-toluidine and NBO analysis with other halogen (Br, F) substitution, J. Mol. Struct. 1039(2013) 197-206.
|
[22] |
S. Bilal, A.U.H.A. Shah, R. Holze, Raman spectroelectrochemical studies of copolymers of o-phenylenediamine and o-toluidine, Vib. Spectrosc. 53(2010) 279-284.
|
[23] |
T. Tanaka, A. Nakajima, A. Watanabe, T. Ohno, Y. Ozaki, Surface-enhanced Raman scattering spectroscopy and density functional theory calculation studies on adsorption of o-, m-, and p-nitroaniline on silver and gold colloid, J. Mol. Struct. 661-662(2003) 437-449.
|
[24] |
M. Goodarzil, A.K. Malik, N. Goudarzi, Simultaneous spectrophotometric determination of nitroanilines using genetic-algorithm-based wavelength selection in principal component-artificial neural network, Afr. J. Pharm. Pharmacol. 6(2012) 135-143.
|
[25] |
A. Cavallaro, V. Piangerelli, F. Nerini, S. Cavalli, C. Reschiotto, Selective determination of aromatic amines in water samples by capillary zone electrophoresis and solid-phase extraction, J. Chromatogr. A 709(1995) 361-366.
|
[26] |
P. Sutthivaiyakit, S. Achatz, J. Lintelmann, et al., LC-MS/MS method for the confirmatory determination of aromatic amines and its application in textile analysis, Anal. Bioanal. Chem. 381(2005) 268-276.
|
[27] |
X.J. Liu, X.W. Chen, S. Yang, X.D. Wang, Comparison of continuous-flow microextraction and static liquid-phase microextraction for the determination of ptoluldine in Chlamydomonas reinhardtii, J. Sep. Sci. 30(2007) 2506-2512.
|
[28] |
A. Ashori, A. Sheibani, Homogeneous liquid-liquid extraction coupled to ion mobility spectrometry for the determination of p-toluidine in water samples, Bull. Environ. Contam. Toxicol. 94(2015) 474-478.
|
[29] |
P.F. Xiao, C.L. Bao, Q. Jia, et al., Determination of nitroanilines in hair dye using polymer monolith microextraction coupled with HPLC, J. Sep. Sci. 34(2011) 675-680.
|
[30] |
L. Zhang, J.M. You, G.C. Ping, et al., Analysis of aromatic amines by high-performance liquid chromatography with pre-column derivatization by 2-(9-carbazole)-ethyl-chloroformate, Anal. Chim. Acta 494(2003) 141-147.
|
[31] |
M. Akyüz, S. Ata, Simultaneous determination of aliphatic and aromatic amines in water and sediment samples by ion-pair extraction and gas chromatographymass spectrometry, J. Chromatogr. A 1129(2006) 88-94.
|
|
|
|