|
|
Synthesis and pharmacological properties of naturally occurring prenylated and pyranochalcones as potent anti-inflammatory agents |
Kongara Damodara, Jin-Kyung Kimb, Jong-Gab Juna |
a Department of Chemistry and Institute of Natural Medicine, Hallym University, Chuncheon 200-702, Republic of Korea;
b Department of Biomedical Science, College of Natural Science, Catholic University of Daegu, Gyeungsan-Si 700-702, Republic of Korea |
|
|
Abstract An efficient approach has been developed for the synthesis of naturally occurring prenylated chalcones viz. kanzonol C (1), stipulin (2), crotaorixin (3), medicagenin (4), licoagrochalcone A (5) and abyssinone D (6) along with the pyranochalcones paratocarpin C (7), anthyllisone (8) and 3-O-methylabyssinone A (9). The key step of the synthesis is a Claisen-Schmidt condensation. Subsequently, their anti-inflammatory effects were investigated in lipopolysaccharides (LPSs)-induced RAW-264.7 macrophages. Of the synthesized chalcones, compounds 5 (IC50=10.41 μmol/L), 6 (IC50=9.65 μmol/L) and 8 (IC50=15.34 μmol/L) show remarkable activity with no cytotoxicity. Compound 9 (IC50=4.5 μmol/L) exhibits maximum (83.6%) nitric oxide (NO) inhibition, but shows slight cytotoxicity. The results reveal that the chalcones bearing the prenyl group at 3- and/or 5-position on ring A (acetophenonemoiety), i.e., 1-4 and 7 show weak, or no inhibition activity, whereas chalcones having the prenyl group only on ring B (aldehyde part), i.e., 5, 6 and 8 show significant activity on the production of inflammatory mediated NO with no cytotoxicity.
|
Received: 04 August 2015
Published: 01 February 2016
|
Fund:This research was financially supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2009-0094071), South Korea. |
Corresponding Authors:
Jong-Gab Jun
E-mail: jgjun@hallym.ac.kr
|
|
|
|
[1] |
J. Quintans, Immunity and inflammation:the cosmic view, Immunol. Cell Biol. 72(1994) 262-264.
|
[2] |
S. Moncada, R.M. Palmer, E.A. Higgs, Nitric oxide:physiology, pathophysiology, and pharmacology, Pharmacol. Rev. 43(1991) 109-142.
|
[3] |
B. Hinz, K. Brune, Cyclooxygenase-2-10 years later, J. Pharmacol. Exp. Ther. 300(2002) 367-375.
|
[4] |
D.I. Batovska, I.T. Todorova, Trends in utilization of the pharmacological potential of chalcones, Curr. Clin. Pharmcol. 5(2010) 1-29.
|
[5] |
(a) A.K. Singh, G. Saxena, R. Prasad, A. Kumar, Synthesis, characterization and calculated non-linear optical properties of two new chalcones, J. Mol. Struct. 1017(2012) 26-31;
|
(b) |
E.D. D'silva, G.K. Podagatlapalli, S.V. Rao, et al., New, high efficiency nonlinear optical chalcone co-crystal and structure-property relationship, Cryst. Growth Des. 11(2011) 5362-5369.
|
[6] |
S.J. Won, C.T. Liu, L.T. Tsao, et al., Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents, Eur. J. Med. Chem. 40(2005) 103-112.
|
[7] |
J.F. Stevens, C.L. Miranda, B. Frei, D.R. Buhler, Inhibition of peroxynitrite-mediated LDL oxidation by prenylated flavonoids:the α,β-unsaturated keto functionality of 2'-hydroxychalcones as a novel antioxidant pharmacophore, Chem. Res. Toxicol. 16(2003) 1277-1286.
|
[8] |
D.K. Mahapatra, S.K. Bharti, V. Asati, Anti-cancer chalcones:structural and molecular target perspectives, Eur. J. Med. Chem. 98(2015) 69-114.
|
[9] |
F. Lunardi, M. Guzela, A.T. Rodrigues, et al., Trypanocidal and leishmanicidal properties of substitution containing chalcones, Antimicrob. Agents Chemother. 47(2003) 1449-1451.
|
[10] |
M. Ritter, R.M. Martins, D. Dias, M.P. Pereira, Recent advances on the synthesis of chalcones with antimicrobial activities:a brief review, Lett. Org. Chem. 11(2014) 498-508.
|
[11] |
J.Y. Park, H.J. Jeong, Y.M. Kim, et al., Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition, Bioorg. Med. Chem. Lett. 21(2011) 5602-5604.
|
[12] |
S.F. Nielsen, T. Boesen, M. Larsen, et al., Antibacterial chalcones-bioisosteric replacement of the 4'-hydroxy group, Bioorg. Med. Chem. 12(2004) 3047-3054.
|
[13] |
C.T. Hsieh, T.J. Hsieh, M. El-Shazly, et al., Synthesis of chalcone derivatives as potential anti-diabetic agents, Bioorg. Med. Chem. Lett. 22(2012) 3912-3915.
|
[14] |
L.M. Zhao, H.S. Jin, L.P. Sun, et al., Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives, Bioorg. Med. Chem. Lett. 15(2005) 5027-5029.
|
[15] |
L. Varinska, M. van Wijhe, M. Belleri, et al., Anti-angiogenic activity of the flavonoid precursor 4-hydroxychalcone, Eur. J. Pharmacol. 691(2012) 125-133.
|
[16] |
K.V. Shashidhara, S.R. Avula, V. Mishra, et al., Identification of quinoline-chalcone hybrids as potential antiulcer agents, Eur. J. Med. Chem. 89(2015) 638-653.
|
[17] |
F. Macaev, V. Boldescu, S. Pogrebnoi, G. Duca, Chalcone scaffold based antimycobacterial agents, Med. Chem. 4(2014) 487-493.
|
[18] |
M. Larsen, H. Kromann, A. Kharazmi, S.F. Nielsen, Conformationally restricted anti-plasmodial chalcones, Bioorg. Med. Chem. Lett. 15(2005) 4858-4861.
|
[19] |
(a) O. Nerya, R. Musa, S. Khatib, et al., Chalcones as potent tyrosinase inhibitors:the effect of hydroxyl positions and numbers, Phytochemistry 65(2004) 1389-1395;
|
(b) |
S. Iwata, N. Nagata, A. Omae, et al., Inhibitory effect of chalcone derivativess on recombinant human aldose reductase, Biol. Pharm. Bull. 22(1999) 323-325.
|
[20] |
(a) S.J. Kim, C.G. Kim, S.R. Yun, et al., Synthesis of licochalcone analogues with increased anti-inflammatory activity, Bioorg. Med. Chem. Lett. 24(2014) 181-185;
|
(b) |
J.H. Jeon, M.R. Kim, J.G. Jun, Concise synthesis of licochalcone A through water-accelerated[3,3]-sigmatropic rearrangement of an aryl prenyl ether, Synthesis 43(2011) 370-376.
|
[21] |
T. Fukai, J. Nishizawa, T. Nomura, Five isoprenoid-substituted flavonoids from Glycyrrhiza eurycarpa, Phytochemistry 35(1994) 515-519.
|
[22] |
P. Bhatt, R. Dayal, Stipulin, a prenylated chalcone from Dalbergia stipulacea, Phytochemistry 31(1992) 719-721.
|
[23] |
T. Narender, S.K. Tanvir, M.S. Rao, et al., Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum, Bioorg. Med. Chem. Lett. 15(2005) 2453-2455.
|
[24] |
G.V.R. Rao, P.S. Rao, K.R. Raju, A prenylated chalcone from Crotalaria medicaginea, Phytochemistry 26(1987) 2866-2868.
|
[25] |
Y. Asada, W. Li, T. Yoshikawa, Isoprenylated flavonoids from hairy root cultures of Glycyrrhiza glabra, Phytochemistry 47(1998) 389-392.
|
[26] |
L. Cui, P.T. Thuong, H.S. Lee, et al., Four new chalcones from Erythrina abyssinica, Planta Med. 74(2008) 422-426.
|
[27] |
Y. Hano, N. Itoh, A. Hanaoka, et al., Paratocarpins A-E, five new isoprenoidsubstituted chalcones from Paratocarpus venenosa Zoll, Heterocycles 41(1995) 191-198.
|
[28] |
L. Pistelli, K. Spera, G. Flamini, et al., Isoflavonoids and chalcones from Anthyllis hermanniae, Phytochemistry 42(1996) 1455-1458.
|
[29] |
M.A. Lawson, M. Kaouadji, A.J. Chulia, A single chalcone and additional rotenoids from Lonchocarpus nicou, Tetrahedron Lett. 51(2010) 6116-6119.
|
[30] |
(a) G.V. Rao, B.N. Swamy, V. Chandregowda, G.C. Reddy, Synthesis of (±)-abyssinone I and related compounds:their anti-oxidant and cytotoxic activities, Eur. J. Med. Chem. 44(2009) 2239-2245;
|
(b) |
A. Maiti, M. Cuendet, V.L. Croy, et al., Synthesis and biological evaluation of (±)-abyssinone Ⅱ and its analogues as aromatase inhibitors for chemoprevention of breast cancer, J. Med. Chem. 50(2007) 2799-2806.
|
[31] |
(a) H.-M. Wang, L. Zhang, J. Liu, et al., Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs, Eur. J. Med. Chem. 92(2015) 439-448;
|
(b) |
N. Tadigoppula, V. Korthikunta, S. Gupta, et al., Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents, J. Med. Chem. 56(2013) 31-45.
|
|
|
|