|
|
Formation of heterocaryotic and homonuclear bridged-dimeric complexes on surface |
Yan-Fang Genga, Shi-Li Wua, Jing Xua, Hong-Liang Daia, Xiao-Kang Lib, Ke Denga, Qing-Dao Zenga |
a CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology(NCNST), Beijing 100190, China;
b Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China |
|
|
Abstract The formation of coordinated dimeric complexes bridged by axial ligands on surface is observed with the help of a 1, 3, 5-tris(10-carboxydecyloxy)benzene (TCDB) template through scanning tunneling microscopy (STM). STM images of molecular adlayers of zinc tetraphenylporphyrin (ZnTPP), zinc phthalocyanine (ZnPc), and their mixture are reported. ZnTPP and ZnPc can spontaneously form highly an ordered structure with a 1:1 molar ratio, which is different from that of individual ZnPc. The coordinated bimolecular complexes bridged with axial ligands, simply as ZnPc-DPP-ZnTPP and ZnPc-DPE-ZnPc, are presented and the corresponding surface structures are compared. ZnPc and ZnTPP can be connected by an axial ligand DPP and formed assembled structures out of surface. Two types of arrays with entirely new structure are obtained for the ZnPc-DPE-ZnPc complex. These bridged hybrid complexes provide an example of design of self-organized crystals on the basis of coordination through non-covalent interactions.
|
Received: 04 December 2015
Published: 04 February 2016
|
Fund:Thisworkwas supported by theNational Basic Research Program of China (No. 2013CB934200), National Basic Research Program of China (No. 2012CB933001), The Chinese Academy of Sciences (No. YZ201318) and the National Natural Science Foundation of China (Nos. 21472029, 51173031, 91127043, 51203030, 51463002). |
Corresponding Authors:
Xiao-Kang Li, Xiao-Kang Li, Qing-Dao Zeng
E-mail: gnnulxk@163.com;kdeng@nanoctr.cn;zengqd@nanoctr.cn
|
|
|
|
[1] |
S.S. Li, B.H. Northrop, Q.H. Yuan, L.J. Wan, P.J. Stang, Surface confined metallosupramolecular architectures:formation and scanning tunneling microscopy characterization, Acc. Chem. Res. 42(2009) 249-259.
|
[2] |
L.J. Wan, Fabricating and controlling molecular self-organization at solid surfaces:studies by scanning tunneling microscopy, Acc. Chem. Res. 39(2006) 334-342.
|
[3] |
H.L. Liang, Y. He, Y.C. Ye, et al., Two-dimensional molecular porous networks constructed by surface assembling, Coord. Chem. Rev. 253(2009) 2959-2979.
|
[4] |
S. Mohnani, D. Bonifazi, Supramolecular architectures of porphyrins on surfaces:the structural evolution from 1D to 2D to 3D to devices, Coord. Chem. Rev. 254(2010) 2342-2362.
|
[5] |
N. Li, X. Zhang, G.C. Gu, et al., Sierpiński-triangle fractal crystals with the C3v point group, Chin. Chem. Lett. 26(2015) 1198-1202.
|
[6] |
J.S. Seo, D. Whang, H. Lee, et al., A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature 404(2000) 982-986.
|
[7] |
M. Eddaoudi, D.B. Moler, H.L. Li, et al., Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res. 34(2001) 319-330.
|
[8] |
S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43(2004) 2334-2375.
|
[9] |
C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organicinorganic nanocomposites, J. Mater. Chem. 15(2005) 3559-3592.
|
[10] |
J.Y. Lee, O.K. Farha, J. Roberts, et al., Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38(2009) 1450-1459.
|
[11] |
G. Bottari, G. de la Torre, T. Torres, Phthalocyanine-nanocarbon ensembles:from discrete molecular and supramolecular systems to hybrid nanomaterials, Acc. Chem. Res. 48(2015) 900-910.
|
[12] |
D. Heim, D. Écija, K. Seufert, et al., Self-assembly of flexible one-dimensional coordination polymers on metal surfaces, J.Am. Chem. Soc. 132(2010) 6783-6790.
|
[13] |
H. Walch, J. Dienstmaier, G. Eder, et al., Extended two-dimensional metal-organic frameworks based on thiolate-copper coordination bonds, J. Am. Chem. Soc. 133(2011) 7909-7915.
|
[14] |
S. Bernhard, K. Takada, D.J. Díaz, H.D. Abruñ a, H. Mürner, Enantiomerically pure chiral coordination polymers:synthesis, spectroscopy, and electrochemistry in solution and on surfaces, J. Am. Chem. Soc. 123(2001) 10265-10271.
|
[15] |
J.I. Urgel, D. Ecija, W. Auwärter, J.V. Barth, Controlled manipulation of gadoliniumcoordinated supramolecules by low-temperature scanning tunneling microscopy, Nano Lett. 14(2014) 1369-1373.
|
[16] |
T. Lin, G.W. Kuang, W.H. Wang, N. Lin, Two-dimensional lattice of out-of-plane dinuclear iron centers exhibiting kondo resonance, ACS Nano 8(2014) 8310-8316.
|
[17] |
O. Shoji, H. Tanaka, T. Kawai, Y. Kobuke, Single molecule visualization of coordination-assembled porphyrin macrocycles reinforced with covalent linkings, J. Am. Chem. Soc. 127(2005) 8598-8599.
|
[18] |
L. Scudiero, K.W. Hipps, D.E. Barlow, A self-organized two-dimensional bimolecular structure, J. Phys. Chem. B 107(2003) 2903-2909.
|
[19] |
K. Suto, S. Yoshimoto, K. Itaya, Two-dimensional self-organization of phthalocyanine and porphyrin:dependence on the crystallographic orientation of Au, J. Am. Chem. Soc. 125(2003) 14976-14977.
|
[20] |
P.C. van Gerven, J.A. Elemans, J.W. Gerritsen, et al., Dynamic combinatorial olefin metathesis:templated synthesis of porphyrin boxes, Chem. Commun. 28(2005) 3535-3537.
|
[21] |
Q. Ferreira, L. Alcácer, J. Morgado, Stepwise preparation and characterization of molecular wires made of zinc octaethylporphyrin complexes bridged by 4, 4'-bipyridine on HOPG, Nanotechnology 22(2011) 435604.
|
[22] |
J. Xu, Q.D. Zeng, Two-dimensional (2D) supramolecular coordination at liquid/solid interfaces studied by scanning tunneling microscopy, Chin. J. Chem. 33(2015) 53-58.
|
[23] |
X.M. Zhang, Y.T. Shen, S. Wang, et al., One plus two:supramolecular coordination in a nano-reactor on surface, Sci. Rep. 2(2012) 742.
|
[24] |
M. Koudia, M. Abel, C. Maurel, et al., Influence of chlorine substitution on the selfassembly of zinc phthalocyanine, J. Phys. Chem. B 110(2006) 10058-10062.
|
[25] |
K. Nilson, P. Palmgren, J. Åhlund, et al., STM and XPS characterization of zinc phthalocyanine on InSb (001), Surf. Sci. 602(2008) 452-459.
|
[26] |
S. Yoshimoto, Y. Honda, O. Ito, K. Itaya, Supramolecular pattern of fullerene on 2D bimolecular "chessboard" consisting of bottom-up assembly of porphyrin and phthalocyanine molecules, J. Am. Chem. Soc. 130(2008) 1085-1092.
|
[27] |
P. Amsalem, L. Giovanelli, J.M. Themlin, T. Angot, Electronic and vibrational properties at the ZnPc/Ag (110) interface, Phys. Rev. B:Condens.Matter 79(2009) 235426.
|
[28] |
Y.B. Li, K. Deng, X.K. Wu, et al., Molecular arrays formed in anisotropically rearranged supramolecular network with molecular substitutional asymmetry, J. Mater. Chem. 20(2010) 9100-9103.
|
[29] |
S.R. Wagner, P.P. Zhang, Formation of highly ordered organic molecular thin films on deactivated si surfaces studied by scanning tunneling microscopy and low energy electron diffraction, J. Phys. Chem. C 118(2014) 2194-2201.
|
[30] |
Y.T. Shen, L.J. Zeng, D. Lei, et al., Competitive adsorption and dynamics of guest molecules in 2D molecular sieves, J. Mater. Chem. 21(2011) 8787-8791.
|
[31] |
Y.T. Shen, K. Deng, X.M. Zhang, et al., Selective and competitive adsorptions of guest molecules in phase-separated networks, J. Phys. Chem. C 115(2011) 19696-19701.
|
[32] |
D.X. Wu, K. Deng, Q.D. Zeng, C. Wang, Selective effect of guest molecule length and hydrogen bonding on the supramolecular host structure, J. Phys. Chem. B 109(2005) 22296-22300.
|
[33] |
X.M. Zhang, Q.D. Zeng, C. Wang, Host-guest supramolecular chemistry at solid-liquid interface:an important strategy for preparing two-dimensional functional nanostructures, Sci. China Chem. 57(2014) 13-25.
|
[34] |
J. Xu, Q.D. Zeng, Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM, Chin. Chem. Lett. 24(2013) 177-182.
|
[35] |
W. Auwärter, A. Weber-Bargioni, A. Riemann, et al., Self-assembly and conformation of tetrapyridyl-porphyrin molecules on Ag (111), J. Chem. Phys. 124(2006) 194708.
|
[36] |
X.H. Kong, Y.L. Yang, S.B. Lei, C. Wang, On the topography multiplicity of nonplanar titanyl (IV) phthalocyanine molecules and the STM imaging mechanism, Surf. Sci. 602(2008) 684-692.
|
[37] |
Q.D. Zeng, D.X. Wu, C. Wang, et al., Bipyridine conformations control the solidstate supramolecular chemistry of Zinc (II) phthalocyanine with bipyridines, CrystEngComm 7(2005) 243-248.
|
|
|
|