|
|
Synthesis and crystal structure of Ni, Cu complexes of 5-methyl-10,10,15,15,20,20-hexaethylcalix[4]pyrrole mono-Schiff bases |
Juan-Juan Sun, Ying Han, Jing Sun, Chao-Guo Yan |
College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China |
|
|
Abstract The functionalized calix[4]pyrrole meso-substituted Schiff bases were conveniently prepared by fourstep synthetic route. Furthermore, the nickel and copper complexes of calix[4]pyrrolemeso-substituted Schiff base with 1:2 stoichiometry were obtained. The crystal structures of the calix[4]pyrroles and their metal complexes were determined by X-ray diffraction.
|
Received: 20 November 2014
Published: 28 March 2015
|
Fund: This work was financially supported by the National Natural Science Foundation of China (No. 21172190) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. |
Corresponding Authors:
Ying Han, Chao-Guo Yan
E-mail: hanying@yzu.edu.cn;cgyan@yzu.edu.cn
|
|
|
|
[1] |
P.A. Gale, P. Anzenbacher, J.L. Sessler, Calixpyrroles II, Coord. Chem. Rev. 222 (2001) 57-102.
|
[2] |
P.A. Gale, C.C. Tong, C.J.E. Haynes, et al., Octafluorocalix
|
[4] |
pyrrole: a chloride/bicabonate antiport agent, Coord. Chem. Rev. 132 (2010) 3240-3241.
|
[3] |
P.A. Gale, S.E. García-Garrido, J. Garric, Anion receptors based on organic frameworks: highlights from 2005 and 2006, Chem. Soc. Rev. 37 (2008) 151-190.
|
[4] |
A.E. Hargrove, S. Nieto, T.Z. Zhang, J.L. Sessler, E.V. Anslyn, Artificial receptors for the recognition of phosphorylated molecules, Chem. Rev. 111 (2011) 6603-6782.
|
[5] |
T.G. Levitskaia, M. Marquez, J.L. Sessler, et al., Fluorinated calixpyrroles: anionbinding extractants that reduce the Hofmeister bias, Chem. Commun. 17 (2003) 2248-2249.
|
[6] |
B. Taner, Novel vic-dioxime ligand containing calix[4] pyrrole moiety: synthesis, characterization, anion binding studies and complexation with Ni(II), J. Incl. Phenom. Macrocycl. Chem. 79 (2014) 75-81.
|
[7] |
H. Miyaji, H.K. Kim, E.K. Sim, et al., Coumarin-strapped calix[4] pyrrole: a fluorogenic anion receptor modulated by cation and anion binding, J. Am. Chem. Soc. 127 (2005) 12510-12512.
|
[8] |
B. Taner, P. Deveci, S. Bereket, A.O. Solak, E. Özcan, The first example of calix[4] -pyrrole functionalized vic-dioxime ligand: synthesis, characterization, spectroscopic studies and redox properties of the mononuclear transition metal complexes, Inorg. Chim. Acta 363 (2010) 4017-4023.
|
[9] |
G. Cafeo, F.H. Kohnke, M.F. Parisi, et al., The elusive b-unsubstituted calix[5] pyrrole finally captured, Org. Lett. 4 (2002) 2695-2697.
|
[10] |
J.L. Sessler, D.Q. An, W.S. Cho, et al., Anion-binding behavior of hybrid calixpyrroles, J. Org. Chem. 70 (2005) 1511-1517.
|
[11] |
B. Mokhtari, K. Pourabdollah, Analytical applications of nano-baskets of calix[4] -pyrroles, J. Incl. Phenom. Macrocycl. Chem. 77 (2013) 23-31.
|
[12] |
K.D. Bhatt, D.J. Vyas, B.A. Makwana, S.M. Darjee, V.K. Jain, Highly stable water dispersible calix[4] pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 121 (2014) 94-100.
|
[13] |
A. Aydogan, A. Akar, Tri-and pentacalix[4] pyrroles: synthesis, characterization and their use in the extraction of halide salts, Chem. Eur. J. 18 (2012) 1999-2005.
|
[14] |
G. Cafeo, G. Gattuso, F.H. Kohnke, et al., Host-guest chemistry of aromatic-amidelinked bis-and tris-calix[4] pyrroles with bis-carboxylates and citrate anion, Chem. Eur. J. 20 (2014) 1658-1668.
|
[15] |
J.L. Sessler, E. Tomat, Transition-metal complexes of expanded porphyrins, Acc. Chem. Res. 40 (2007) 371-379.
|
[16] |
Y. Matano, H. Imahori, Phosphole-containing calixpyrroles, calixphyrins, and porphyrins: synthesis and coordination chemistry, Acc. Chem. Res. 42 (2009) 1193-1204.
|
[17] |
J. Jubb, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Redox chemistry of meso-octaethylporphyrinogen: formation and opening of a cyclopropane ring, J. Am. Chem. Soc. 114 (1992) 6571-6573.
|
[18] |
S. De Angelis, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Oxidation of metalmeso-octaethylporphyrinogen complexes leading to novel oxidized forms of porphyrinogen other than porphyrins. 1. The redox chemistry of nickel(I1)-and copper (11)-meso-octaethylporphyrinogen complexes occurring with the formation and cleavage of a cyclopropane unit, J. Am. Chem. Soc. 116 (1994) 5691-5701.
|
[19] |
T. Nakabuchi, Y. Matano, H. Imahori, Synthesis, structures, and coordinating properties of phosphole-containing hybrid calixpyrroles, Organometallics 27 (2008) 3142-3152.
|
[20] |
V. Blangy, C. Heiss, V. Khlebnikov, et al., Synthesis, structure, and complexation properties of partially and completely reduced meso-octamethylporphyrinogens (calix[4] pyrroles), Angew. Chem. Int. Ed. 48 (2009) 1688-1691.
|
[21] |
G.B. Deacon, M.G. Gardiner, P.C. Junk, J.P. Townley, J. Wang, Rare-earth metalation of calix[4] pyrrole/calix[4] arene free of alkali-metal companions, Organometallics 31 (2012) 3857-3864.
|
[22] |
E. Askarizadeh, A.M.J. Devoille, D.M. Boghaei, A.M.Z. Slawin, J.B. Love, Ligand modifications for tailoring the binuclear microenvironments in Schiff-base calixpyrrole pacman complexes, Inorg. Chem. 48 (2009) 7491-7500.
|
[23] |
J.B. Love, A macrocyclic approach to transition metal and uranyl pacman complexes, Chem. Commun. (2009) 3154-3165.
|
[24] |
E. Askarizadeh, S.B. Yaghoo, D.M. Boghaei, A.M.Z. Slawinc, J.B. Love, Fluidization characteristics of printed circuit board plastic particles with different sizes, Chem. Commun. 46 (2010) 710-712.
|
[25] |
Q.J. Pan, G. Schreckenbach, P.L. Arnold, J.B. Love, Theoretical predictions of cofacial bis(actinyl) complexes of a stretched Schiff-base calixpyrrole ligand, Chem. Commun. 47 (2011) 5720-5722.
|
[26] |
B. Taner, P. Deveci, E. Özcan, A.O. Solak, A novel vic-dioxime ligand and its Ni(II), Cu(II) and Co(II) complexes containing calix[4] pyrrole moiety: synthesis, characterization and redox properties, J. Incl. Phenom. Macrocycl. Chem. 74 (2012) 391-396.
|
[27] |
G. Cafeo, G. Carbotti, A. Cuzzola, et al., Drug delivery with a calixpyrrole-trans-Pt(II) complex, J. Am. Chem. Soc. 135 (2013) 2544-2551.
|
[28] |
C.G. Yan, L. Li, W.L. Liu, Metallic macrocycle with a 1,3-alternate calix[4] arene salicylideneamine ligand, J. Coord. Chem. 62 (2009) 2118-2124.
|
[29] |
L. Liu, K. Huang, C.G. Yan, Syntheses, reactions and crystal structures of 1,3-alternate p-tert-butylthiacalix[4] arene esters and amides, J. Incl. Phenom. Macrocycl. Chem. 66 (2010) 349-355.
|
[30] |
J. Sun, L.L. Zhang, Y. Yao, C.G. Yan, Synthesis, crystal structures and complexing properties of tetramethoxyresorcinarene functionalized tetraacylhydrazones, J. Incl. Phenom. Macrocycl. Chem. 79 (2014) 485-494.
|
[31] |
Y. Han, G.L. Wang, J.J. Sun, J. Sun, C.G. Yan, Synthesis and crystal structure of 15α, 20α-di(4-hydroxylphenyl)calix[4] pyrroles and 10α,20β-di(4-hydroxylphenyl)-calix[4] pyrroles, Tetrahedron 69 (2013) 10604-10609.
|
[32] |
Y. Han, J.J. Sun, G.L. Wang, C.G. Yan, Synthesis and properties of functionalized schiff bases of 5α, 10α-di(4-hydroxylphenyl)calix[4] pyrrole and 5α,15β-di(4-hydroxylphenyl)calix[4] pyrrole, Chem. Res. Chin. Univ. 30 (2014) 919-924.
|
[33] |
Y. Han, J.J. Sun, G.L. Wang, C.G. Yan, Synthesis, crystal structure and complexing properties of calix[4] pyrrole 10a,20a-disubstituted Schiff bases and urea derivatives, J. Mol. Struct. 1083 (2015) 300-310.
|
[34] |
G.M. Sheldrick, SHELX9Z Structure Determination Programs, University of Göttingen, Göttingen, 1997.
|
|
|
|