|
|
Microwave-assisted effi cient synthesis of azlactone derivatives using 2-aminopyridine-functionalized sphere SiO2 nanoparticles as a reusable heterogeneous catalyst |
Akbar Mobinikhaledia, Hassan Moghanianb, Samira Pakdela |
a Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran;
b Department of Chemistry, Dezful Branch, Islamic Azad University, Dezful, Iran |
|
|
Abstract In the present work, the highly efficient Erlenmeyer synthesis of azlactones catalyzed by 2- aminopyridine, supported on nano-sphere SiO2 is reported. First, the silica nanoparticles were modified with triethoxysilylpropyl chloride and then 2-aminopyridine was attached to the support via covalent linkages. This new heterogenized catalyst was used for efficient microwave-assisted synthesis of azlactone derivatives with Ac2O as a condensing agent under solvent-free conditions. The present method offers advantages including high yields, short reaction times and simple work-up. Also, the catalyst can be easily recycled and reused several times, which makes this method attractive, economic and environmentally-benign.
|
Received: 10 January 2014
Published: 17 December 2014
|
Corresponding Authors:
Hassan Moghanian
E-mail: moghanian@gmail.com
|
|
|
|
[1] |
K. Takenaka, T. Tsuji, Synthesis of [1,3,4]thiadiazolo[3,2-a]pyrimidines in the presence of formic acid, J. Heterocyclic. Chem. 33 (1996) 1367-1370.
|
[2] |
S. Paul, P. Nanda, R. Gupta, A. Loupy, Calcium acetate catalyzed synthesis of 4- arylidene-2-phenyl-5(4H)-oxazolones under solvent-free conditions, Tetrahedron Lett. 45 (2004) 425-427.
|
[3] |
K. Mohammed Khan, M.R. Mughal, M.T. Hassan Khan, et al., Oxazolones: new tyrosinase inhibitors; synthesis and their structure-activity relationships, Bioorg. Med. Chem. 14 (2006) 6027-6033.
|
[4] |
J.T. Konkel, J. Fan, B. Jayachandran, K.L. Kirk, Syntheses of 6-fluorometa-tyrosine and of its metabolites, J. Flouorine Chem. 115 (2002) 27-32.
|
[5] |
S. Chandrasekhar, P. Karri, Aromaticity in azlactone anions and its significance for the Erlenmeyer synthesis, Tetrahedron Lett. 47 (2006) 5763-5766.
|
[6] |
F. Cavalier, J. Verducci, New synthesis of the cyclic tetrapeptide tentoxin employing an azlactone as key intermediate, Tetrahedron Lett. 36 (1995) 4425-4428.
|
[7] |
A. Avenoza, J.H. Busto, C. Cativiela, J.M. Peregrina, Reactivity of (Z)-4-arylidene- 5(4H)-oxazolones: [4 + 2] cycloaddition versus [4 + 3] cycloaddition/nucleophilic trapping, Tetrahedron Lett. 43 (2002) 4167-4170.
|
[8] |
G.T. Hermanson, G.R. Mattson, R.I. Krohn, Preparation and use of immunoglobulin- binding affinity supports on Emphaze beads, J. Chromatogr. A 691 (1995) 113- 122.
|
[9] |
E. Etschenberg, H. Jacobi, W. Opitz, Ger. Pat., 904512 (1980).
|
[10] |
C. Sanchez, C. Mendez, J.A. Salas, Indolocarbazole natural products: occurrence, biosynthesis, and biological activity, Nat. Prod. Rep. 23 (2006) 1007-1045.
|
[11] |
S.A. Siddiqui, S.R. Bhusare, D.V. Jarikote, R.P. Pawar, Y.B. Vibhute, New novel synthesis and antibacterial activity of 1-(substituted phenyl)-2-phenyl-4-(3'- halo, 4'-hydroxy 5'-methoxy benzylidene)-imidazole-5-ones, Bull. Korean Chem. Soc. 22 (2001) 1033-1036.
|
[12] |
U. Salg?n-Goksen, N. Gö khan-Kelekci, O. Goktas, et al., 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5- methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities, Bioorg. Med. Chem. 15 (2007) 5738-5751.
|
[13] |
K. Urano, Y. Tornioka, K. Okubo, K. Yarnazaki, A. Nagamatsu, Preparation of 4-[(alkylamino)alkylidene]-2-phenyl-2-oxazolin-5-ones, Jpn. Kokai Tokkyo Koho JP 01 29369 189 29, 3691, (1989).
|
[14] |
E. Erlenmeyer, Ueber die condensation der hippursäure mit phtalsäureanhydrid und mit benzaldehyd, Annalen 275 (1893) 1-8.
|
[15] |
G.V. Boyd, P.H. Wright, Cyclisation of α-acylamino-acids in the presence of perchloric acid to give 5-oxo-△2-oxazolinium perchlorates, J. Chem. Soc., Perkin Trans. 1 (1972) 909-913.
|
[16] |
Y.S. Rao, Reactions in polyphosphoric acid. I. New stereospecific synthesis of the E isomers of 2-phenyl-4-arylmethylene-2-oxazolin-5-ones, J. Org. Chem. 41 (1976) 722-725.
|
[17] |
J. Kashyap, A.B. Chetry, P.J. Das, Synthesis of 4-arylidene-2-phenyloxazol-5-ones using 1:1 mixture of Al2O3-H3BO3, Synth. Commun. 28 (1998) 4178-4191.
|
[18] |
F.M. Bautista, J.M. Campelo, A. García, et al., Study on dry-media microwave azalactone synthesis on different supported KF catalysts: influence of textural and acid-base properties of supports, J. Chem. Soc., Perkin Trans. 2 (2002) 227- 234.
|
[19] |
K.A. Monk, D. Sarapa, R.S. Mohan, Bismuth (III) acetate: a new catalyst for preparation of azlactones via the Erlenmeyer synthesis, Synth. Commun. 30 (2000) 3167-3170.
|
[20] |
M.M. Khodaei, A.R. Khosropour, S.J.H. Jomor, Efficient and chemoselective conversion of aryl aldehydes to their azalactones catalysed by Bi(III) salts under solvent free conditions, J. Chem. Res. Synop. (2003) 638-641.
|
[21] |
P.S. Rao, R.V. Venkataratnam, Anhydrous zinc chloride catalyzed synthesis of 2- phenyl-4-arylidene-5(4H)-oxazolones, Indian J. Chem. Sect. 33B (10) (1994) 984- 985.
|
[22] |
C. Yu, B. Zhou, W. Su, Z. Xu, Erlenmeyer synthesis for azlactones catalyzed by ytterbium(III) triflate under solvent-free conditions, Synth. Commun. 36 (2006) 3447-3453.
|
[23] |
P.A. Conway, K. Devine, F. Paradisi, A simple and efficient method for the synthesis of Erlenmeyer azlactones, Tetrahedron 65 (2009) 2935-2938.
|
[24] |
A.R. Khosropour, M.M. Khodaei, S.J. Hoseini Jomor, A new, efficient and chemoselective one-pot protocol for synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones from aryl aldehyde bisulfite adducts promoted by POCl3, J. Heterocycl. Chem. 45 (2008) 683-686.
|
[25] |
M. Rostami, A.R. Khosropour, V. Mirkhani, et al., [C6(MIm)2]2W10O32. 2H2O:a novel and powerful catalyst for the synthesis of 4-arylidene-2-phenyl-5(4)- oxazolones under ultrasonic condition, C. R. Chim. 14 (2011) 869-877.
|
[26] |
B. Samani Ghaleh Taki, V. Mirkhani, I. Mohammadpoor-Baltork, et al., Synthesis and characterization of nano silica supported tungstophosphoric acid: an efficient, reusable heterogeneous catalyst for the synthesis of azlactones, J. Inorg. Organomet. Polym. 23 (2013) 758-765.
|
[27] |
H. Moghanian, M. Shabanian, H. Jafari, Microwave-assisted efficient synthesis of azlactone derivatives using TsCl/DMF under solvent-free conditions, C. R. Chim. 15 (2012) 346-349.
|
[28] |
O. Lanitou, D. Dimotikali, E. Yannakopoulou, K. Papadopoulos, Studies on the catalytic activity of novel hybridized chiral organo-inorganic catalysts for epoxidation and alkylation reactions, Chem. Eng. J. 134 (2007) 72-77.
|
[29] |
H. Paul, S. Basu, S. Bhaduri, G.K. Lahiri, Platinum carbonyl derived catalysts on inorganic and organic supports: a comparative study, J. Organomet. Chem. 689 (2004) 309-316.
|
[30] |
K. Motokura, N. Viswanadham, G. Murali Dhar, Y. Iwasawa, Creation of acid-base bifunctional catalysis for efficient C-C coupling reactions by amines immobilization on SiO2, silica-alumina, and nano-H-ZSM-5, Catal. Today 141 (2009) 19-24.
|
[31] |
S. Huh, H.T. Chen, J.W. Wiench, M. Pruski, V.S.Y. Lin, Cooperative catalysis by general acid and base bifunctionalized mesoporous silica nanospheres, Angew. Chem. Int. Ed. 44 (2005) 1826-1830.
|
[32] |
X.Y. Shi, J.F. Wei, Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide, J. Mol. Catal. A: Chem. 280 (2008) 142-147.
|
[33] |
D. Brunel, Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals, Microporous Mesoporous Mater. 27 (1999) 329- 344.
|
[34] |
M.E. Chimienti, L.R. Pizzio, C.V. Cáceres, M.N. Blanco, Tungstophosphoric and tungstosilicic acids on carbon as acidic catalysts, Appl. Catal. A: Gen. 208 (2001) 7-19.
|
[35] |
Y. Kamiya, T. Okuhara, M. Misono, et al., Catalytic chemistry of supported heteropolyacids and their applications as solid acids to industrial processes, Catal. Surv. Asia 12 (2008) 101-113.
|
[36] |
V.M. Joshi, R.L. Magar, P.B. Throat, et al., Novel one-pot synthesis of 4H-chromene derivatives using amino functionalized silica gel catalyst, Chin. Chem. Lett. 25 (2014) 455-458.
|
[37] |
X. Shen, Y. Zhai, Y. Sun, H. Gu, Preparation of monodisperse spherical SiO2 by microwave hydro-thermal method and kinetics of dehydrated hydroxyl, J. Mater. Sci. Technol. 26 (2010) 711-714.
|
[38] |
A. Saffar-Teluri, Boron trifluoride supported on nano-SiO2: an efficient and reusable heterogeneous catalyst for the synthesis of bis(indolyl)methanes and oxindole derivatives, Res. Chem. Intermed. 40 (2014) 1061-1067.
|
[39] |
J. Safaei-Ghomi, R. Teymuri, H. Shahbazi-Alavi, A. Ziarati, SnCl2/nano SiO2: a green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4Hpyrans, Chin. Chem. Lett. 24 (2013) 921-925.
|
[40] |
B.F. Mirjalili, A. Bamoniri, M.A. Mirhoseini, Nano-SnCl4·SiO2 - a versatile and efficient catalyst for synthesis of 14-aryl- or 14-alkyl-14H-dibenzo[a,j]xanthenes, Chem. Heterocycl. Compd. 48 (2012) 856-860.
|
[41] |
Q. Zhang, Z. Ye, S.T. Wang, J. Yin, Facile one-pot synthesis of PEGylated monodisperse mesoporous silica nanoparticles with controllable particle sizes, Chin. Chem. Lett. 25 (2014) 257-260.
|
[42] |
N. Foroughifar, A. Mobinikhaledi, H. Moghanian, A straightforward and efficient catalyst-free one-pot synthesisof N-acyl-1, 3-diaryl-2-azaphenalene derivatives via multicomponent reactions, Chem. Lett. 39 (2010) 180-181.
|
[43] |
A. Mobinikhaledi, H. Moghanian, M. Deinavizadeh, pTSA-catalyzed condensation of xylenols and aldehydes under solvent-free conditions: one-pot synthesis of 9H-xanthene or bisphenol derivatives, C. R. Chim. 16 (2013) 1035-1041.
|
[44] |
H. Moghanian, A. Mobinikhaledi, A.G. Blackman, E. Sarough-Farahani, Sulfanilic acid-functionalized silica-coated magnetite nanoparticles as an efficient, reusable and magnetically separable catalyst for the solvent-free synthesis of 1-amidoand 1-aminoalkyl-2-naphthols, RSC Adv. 4 (2014) 28176-28185.
|
[45] |
M.A. Nasseri, M. Sadeghzadeh, Multi-component reaction on free nano-SiO2 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, J. Chem. Sci. 125 (2013) 537-544.
|
[46] |
T. Zeng, L. Yang, R. Hudson, et al., Fe3O4 nanoparticle-supported copper(I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines, Org. Lett. 13 (2011) 442-445.
|
[47] |
F. Adam, K. Mohammed Hello, H. Osman, Esterification via saccharine mediated silica solid catalyst, Appl. Catal. A: Gen. 365 (2009) 165-172.
|
[48] |
K.A. Yeboah, J.D. Boyd, K.A. Kyeremateng, et al., Large accelerations from small thermal differences: case studies and conventional reproduction of microwave effects on palladium couplings, Reac. Kinet. Mech. Cat. 112 (2014) 295-304.
|
[49] |
M. Rostami, A. Khosropour, V. Mirkhani, et al., Organic-inorganic hybrid polyoxometalates: efficient, heterogeneous and reusable catalysts for solvent-free synthesis of azlactones, Appl. Catal. A: Gen. 397 (2011) 27-34.
|
[50] |
B.R. Madje, M.B. Ubale, J.V. Bharad, M.S. Shingare, Alum an efficient catalyst for Erlenmeyer synthesis, S. Afr. J. Chem. 63 (2010) 158-161.
|
[51] |
H.C. Song, Y.F. Sun, W.M. Li, et al., Second nonlinear polarizability of 4-substituted- benzylideneoxazol-5(4H)-ones and 9-substituted-phenylacridines, Acta Chim. Sinica 59 (2001) 1563-1565.
|
[52] |
S.G. Patil, R.R. Bagul, V.M. Kamble, V.A. Navale, A green protocol for Erlenmeyer Plö chl reaction by using [bmIm]OH, J. Chem. Pharm. Res. 3 (2011) 285-290.
|
[53] |
J.D. Fissekis, C.G. Skinner, W. Shive, Synthesis and biological activity of some cycloalkaneglyoxylic acids, J. Am. Chem. Soc. 81 (1959) 2715-2718.
|
[54] |
T. Cleary, J. Brice, N. Kennedy, F. Chavez, One-pot process to Z-a-benzoylaminoacrylic acid methyl esters via potassium phosphate-catalyzed Erlenmeyer reaction, Tetrahedron Lett. 51 (2010) 625-628.
|
[55] |
S. Paul, P. Nanda, R. Gupta, A. Loupy, Ac2O-Py/basic alumina as a versatile reagent for acetylations in solvent-free conditions under microwave irradiation, Tetrahedron Lett. 43 (2002) 4261-4265.
|
[56] |
I.C. Ivanov, T.N. Glasnov, D. Heber, Synthesis of 2H-chromeno[4,3-b]pyridine- 2,5(1H)-diones and related heterocycles via the Erlenmeyer-Ploechl reaction, J. Heterocycl. Chem. 42 (2005) 857-861.
|
[57] |
G. Romanelli, J.C. Autino, P. Va’zquez, et al., A suitable synthesis of azlactones (4- benzylidene-2-phenyloxazolin-5-ones and 4-alkylidene-2-phenyloxazolin-5- ones) catalyzed by silica-alumina supported heteropolyacids, Appl. Catal. A: Gen. 352 (2009) 208-213.
|
|
|
|