|
|
Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety via K2CO3-catalyzed 1,3-dipolar cycloaddition reaction |
Zai-Gang Luo, Yu Zhao, Feng Xu, Chao Ma, Xue-Mei Xu, Xiao-Mei Zhang |
College of Chemical Engineering, Anhui University of Science & Technology, Huainan 232001, China |
|
|
Abstract Two calix[4]arene derivatives containing 1,2,3-triazole moiety were synthesized via K2CO3-catalyzed 1,3-dipolar cycloaddition reaction between calix[4]arene-based azide and active methylene compounds in good yields. The structures of the two compounds synthesized herein were fully confirmed by 1H NMR, 13C NMR, and MS (ESI). The thermal analysis showed that the mass losses of the synthesized compounds 4 and 5 containing 1,2,3-triazole groups are similar to each other.
|
Received: 11 March 2014
Published: 29 May 2014
|
Fund: The authors gratefully thank the financial supports of the National Natural Science Foundation of China (No. 21102003), Scientific Research Foundation for the Introduction of Talent and Young Teachers Scientific Research Foundation of Anhui University of Science & Technology (Nos. 11214, 2012QNY27). |
Corresponding Authors:
Zai-Gang Luo, Xue-Mei Xu
E-mail: luozi139@163.com;littlekitty@126.com
|
|
|
|
[7] |
F. Xie, K. Sivakumar, Q. Zeng, et al., A fluorogenic ‘click' reaction of azidoanthracene derivatives, Tetrahedron 64 (2008) 2906-2914.
|
[13] |
C.D. Gutsche, M. Iqbal, D. Stewart, Calixarenes. 19. Syntheses procedures for ptertbutylcalix[4] arene, J. Org. Chem. 51 (1986) 742-745.
|
[1] |
X.M. Chen, Z.J. Li, Z.X. Ren, Z.T. Huang, Synthesis of glucosylated 1,2,3-triazole derivatives, Carbohydr. Res. 315 (1999) 262-267.
|
[8] |
K. Sivakumar, F. Xie, B. Cash, et al., A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes, Org. Lett. 6 (2004) 4603-4606.
|
[9] |
V.R. Kamalraj, S. Senthil, P. Kannan, One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers, J. Mol. Struct. 892 (2008) 210-215.
|
[10] |
I.F. Cottrell, D. Hands, P.G. Houghton, G.R. Humphrey, S.H.B. Wright, An improved procedure for the preparation of 1-benzyl-1H-1,2,3-triazoles form benzyl azides, J. Heterocycl. Chem. 28 (1991) 301-304.
|
[4] |
R. Alvarez, S. Velazquez, A. San-Felix, et al., 1,2,3-Triazole-20,50-bis-O-(tert-butyl-dimethylsilyl)-b-D-ribofuranosyll-3'-spiro-5"-(4'-amino-l",2"-oxathiole 2",2"-dioxide) (TSAO) analogues: synthesis and anti-HIV-1 activity, J. Med. Chem. 37 (1994) 4185-4194.
|
[5] |
S. Velazquez, R. Alvarez, C. Perez, et al., Regiospecific synthesis and anti-human immuno-deficiency virus activity of novel 5-substituted N-alkylcarbamoyl and N, N-dialkyl carbamoyl 1,2,3-triazole-TSAO analogues, J. Antiviral Chem. Chemother. 9 (1998) 481-489.
|
[6] |
R. Huisgen, in: A. Padwa (Ed.), 1,3-Dipolar Cycloaddition Chemistry, vol. 1, Wiley, New York, 1984, pp. 1-176.
|
[11] |
(a) Y. Liu, C. You, H. Zhang, Supramolecular Chemistry-Molecular Recognition and Assembly of Synthetic Receptors, Nankai University Press, 2001;
|
(b) |
L. Mandolini, R. Ungaro, Calixarenes in Action, Imperial College Press, London, 2000;
|
(c) |
Z. Asfari, W. Bohmer, J. Harrowfield, et al., Calixarenes, Kluwer Academic Press, Dordrecht, 2001.
|
(b) |
S.Y. Park, J.H. Yoon, C.S. Hong, et al., A pyrenyl-appended triazole-based calix[4] arene as a fluorescent sensor for Cd2+ and Zn2+, J. Org. Chem. 73 (2008) 8212-8218;
|
[16] |
V.S. Talanov, R.A. Bartsch, Highly selective preparation of conformationally rigidstereoisomeric calix[4] arenes with two carboxymethoxy groups, J. Chem. Soc., Perkin Trans. 1 (1999) 1957-1961.
|
[12] |
(a) A. Vecchi, B. Melai, A. Marra, C. Chiappe, A. Dondoni, Microwave-enhanced ionothermal CuAAC for the synthesis of glycoclusters on a calix[4] arene platform, J. Org. Chem. 73 (2008) 6437-6440;
|
(c) |
B.T. Zhao, X.M. Zhu, X.H. Chen, Z.N. Yan, W.M. Zhu, Novel clicked tetrathiafulvalene-calix[4] arene assemblies: synthesis and intermolecular electron transfer toward p-chloranil, Chin. Chem. Lett. 24 (2013) 573-577;
|
(d) |
H. Chen, Z.L. Zou, S.L. Tan, et al., Efficient synthesis of water-soluble calix[4] -arenes via thiol-ene "click" chemistry, Chin. Chem. Lett. 24 (2013) 367-369.
|
[15] |
F. Szemes, D. Hesek, Z. Chen, et al., Synthesis and characterization of novel acyclic, macrocyclic, and calix[4] arene ruthenium(Ⅱ) bipyridyl receptor molecules that recognize and sense anions, Inorg. Chem. 35 (1996) 5868-5879.
|
[17] |
C. Jaime, J. de Mendoza, P. Prados, P. Nieto, C. Sanchez, Carbon-13 NMR chemical shifts. A single rule to determine the conformation of calix[4] arenas, J. Org. Chem. 56 (1991) 3372-3376.
|
[14] |
Z.T. Li, G.Z. Ji, C.X. Zhao, et al., Self-assembling calix[4] arene catenanes preorganization, conformation, selectivity, and efficiency, J. Org. Chem. 64 (1999) 572-3584.
|
[3] |
M.J. Genin, D.A. Allwine, D.J. Anderson, et al., Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenza and Moraxella catarrhalis, J. Med. Chem. 43 (2000) 953-970.
|
[2] |
L.L. Brockunier, E.R. Parmee, H.O. Ok, et al., Human beta3-adrenergic receptor agonists containing 1,2,3-triazole-substituted benzenesulfonamides, Bioorg. Med. Chem. Lett. 10 (2000) 2111-2114.
|
|
|
|