|
|
A facile approach toward multicolor polymers:Supramolecular self-assembly via host-guest interaction |
Xiao-Hai Yang, Fang Zhao, Lei-Liang He, Ke-Min Wang, Jin Huang, Qing Wang, Jian-Bo Liu, Meng Yang |
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China |
|
|
Abstract A one-step and facile strategy toward the construction of multicolor polymers via supramolecular selfassembly was proposed. Multicolor polymers were simply prepared by the self-assembly of adamantane-labeled fluorescein, adamantane-labeled rhodamine B and β-cyclodextrin polymers via host-guest interaction between β-cyclodextrin and adamantane. Multicolor polymers showed several interesting properties: multiple emission signatures by a single wavelength excitation, easy tunability, intense fluorescence, high photostablility. In addition, the self-assembly approach implied a facile and flexible strategy for constructing functionalized materials, such as multicolor materials for biological labeling and imaging, and sensing materials for the detection of physiological parameters.
|
Received: 30 April 2014
Published: 06 June 2014
|
Fund: This study was supported by the National Natural Science Foundation of China (Nos. 21190044, 21175035), National Basic Research Program (No. 2011CB911002), International Science & Technology operation Program of China (No. 2010DFB30300). |
Corresponding Authors:
Ke-Min Wang
E-mail: kmwang@hnu.edu.cn
|
|
|
|
[10] |
G.C. Bazan, Novel organic materials through control of multichromophore interactions, J. Org. Chem. 72 (2007) 8615-8635.
|
[19] |
M. Vendrell, D. Zhai, J.C. Er, Y.T. Chang, Combinatorial strategies in fluorescent probe development, Chem. Rev. 112 (2012) 4391-4420.
|
[6] |
J.Z. Song, Q. Yang, F.T. Lv, L.B. Liu, S. Wang, Visual detection of DNA mutation using multicolor fluorescent coding, ACS Appl. Mater. Interfaces 4 (2012) 2885-2890.
|
[12] |
L. Wang, W.H. Tan, Multicolor FRET silica nanoparticles by single wavelength excitation, Nano. Lett. 6 (2006) 84-88.
|
[17] |
Y.N. Teo, E.T. Kool, DNA-multichromophore systems, Chem. Rev. 112 (2012) 4221-4245.
|
[23] |
E. Busseron, Y. Ruff, E. Moulin, N. Giuseppone, Supramolecular self-assemblies as functional nanomaterials, Nanoscale 5 (2013) 7098-7140.
|
[26] |
L.M. Chen, X. Zhao, Y. Lin, et al., A supramolecular strategy to assemble multifunctional viral nanoparticles, Chem. Commun. 49 (2013) 9678-9680.
|
[2] |
E.C. Greyson, B.R. Stepp, X. Chen, et al., Singlet exciton fission for solar cell applications: energy aspects of interchromophore coupling, J. Phys. Chem. B 114 (2009) 14223-14232.
|
[14] |
J.B. Liu, X. Yang, K.M. Wang, et al., Combining physical embedding and covalent bonding for stable encapsulation of quantum dots into agarose hydrogels, J. Mater. Chem. 22 (2012) 495-501.
|
[15] |
H. Nishi, T. Namari, S. Kobatake, Photochromic polymers bearing various diarylethene chromophores as the pendant: synthesis, optical properties, and multicolor photochromism, J. Mater. Chem. 21 (2011) 17249-17258.
|
[20] |
T. Tsuruoka, H. Kawasaki, H. Nawafune, et al., Controlled self-assembly of metalorganic frameworks on metal nanoparticles for efficient synthesis of hybrid nanostructures, ACS Appl. Mater. Interfaces 3 (2011) 3788-3791.
|
[24] |
W. Tao, Y. Liu, B. Jiang, et al., A linear-hyperbranched supramolecular amphiphile and its self-assembly into vesicles with great ductility, J. Am. Chem. Soc. 134 (2012) 762-764.
|
[27] |
L. Wang, L.L. Li, H.L. Ma, et al., Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.
|
[30] |
V. Indirapriyadharshini, P. Karunanithi, P. Ramamurthy, Inclusion of resorcinolbased acridinedione dyes in cyclodextrins: fluorescence enhancement, Langmuir 17 (2001) 4056-4060.
|
[32] |
W. Shi, X.H. Li, H.M. Ma, A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells, Angew. Chem. Int. Ed. 51 (2012) 6432-6435.
|
[16] |
J.N. Wilson, E.T. Kool, Fluorescent DNA base replacements: reporters and sensors for biological systems, Org. Biomol. Chem. 4 (2006) 4265-4274.
|
[22] |
B. Mu, Y.R. Kang, A.Q. Wang, Preparation of a polyelectrolyte-coated magnetic attapulgite composite for the adsorption of precious metals, J. Mater. Chem. A 1 (2013) 4804-4811.
|
[25] |
E. Deniz, N. Kandoth, A. Fraix, et al., Photoinduced fluorescence activation and nitric oxide release with biocompatible polymer nanoparticles, Chem. Eur. J. 18 (2012) 15782-15787.
|
[28] |
C. Koopmans, H. Ritter, Formation of physical hydrogels via host-guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups, Macromolecules 41 (2008) 7418-7422.
|
[29] |
H.A. Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-2707.
|
[5] |
M. Shi, J. Chen, Y. Huang, et al., A multicolor nano-immunosensor for the detection of multiple targets, RSC Adv. 3 (2013) 13884-13890.
|
[11] |
E. Herz, A. Burns, D. Bonner, et al., Large stokes-shift fluorescent silica nanoparticles with enhanced emission over free dye for single excitation multiplexing, macro, Rapid Commun. 30 (2009) 1907-1910.
|
[18] |
W.Y. Yuan, Z.S. Lu, C.M. Li, Self-assembling microsized materials to fabricate multifunctional hierarchical nanostructures on macroscale substrates, J. Mater. Chem. A 1 (2013) 6416-6424.
|
[4] |
A.C. Grimsdale, K. Leok Chan, R.E. Martin, et al., Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices, Chem. Rev. 109 (2009) 897-1091.
|
[9] |
A. Datta, S.K. Pati, Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability, Chem. Soc. Rev. 35 (2006) 1305-1323.
|
[7] |
S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 107 (2007) 1324-1338.
|
[8] |
F.J. Hoeben, P. Jonkheijm, E. Meijer, P.H.J. Schenning Albertus, About supramolecular assemblies of π-conjugated systems, Chem. Rev. 105 (2005) 1491-1546.
|
[13] |
C.N. Allen, N. Lequeux, C. Chassenieux, et al., Optical analysis of beads encoded with quantum dots coated with a cationic polymer, Adv. Mater. 19 (2007) 4420-4425.
|
[1] |
E. Schwartz, S. Le Gac, J.J. Cornelissen, et al., Macromolecular multi-chromophoric scaffolding, Chem. Soc. Rev. 39 (2010) 1576-1599.
|
[21] |
O.I. Wilner, I. Willner, Functionalized DNA nanostructures, Chem. Rev. 112 (2012) 2528-2556.
|
[3] |
B.E. Hardin, E.T. Hoke, P.B. Armstrong, et al., Increased light harvesting in dyesensitized solar cells with energy relay dyes, Nat. Photon. 3 (2009) 406-411.
|
[31] |
G.S. Chen, M. Jiang, Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly, Chem. Soc. Rev. 40 (2011) 2254-2266.
|
|
|
|