|
|
Analysis on dye-sensitized solar cells based on Fe-doped TiO2 by intensity-modulated photocurrent spectroscopy and Mott-Schottky |
Qiu-Ping Liua,b |
a School of Pubic Policy and Management, Tsinghua University, Beijing 100084, China;
b Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The pure TiO2 and Fe salts [Fe(C2O4)2•5H2O]-doped TiO2 electrodes were prepared by the hydrothermal method. The pure TiO2 or Fe-doped TiO2 slurry was coated onto the fluorine-doped tin oxide glass substrate by the Doctor Blade method and then sintered at 450℃. The Mott-Schottky plot indicates that the flat band potential of TiO2 was shifted positively after Fe-doped TiO2. The positive shift of the flat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2. This study shows that photovoltaic efficiency increased by 22.9% from 6.07% to 7.46% compared to pure TiO2, and the fill factors increased from 0.53 to 0.63.
|
Received: 27 December 2013
Published: 15 March 2014
|
Fund: This work was supported by National Research Fund for High-Tech Research and Development of China Program (No. 2007AA05Z439). |
Corresponding Authors:
Qiu-Ping Liu
E-mail: liuqingping@mail.tsinghua.edu.cn
|
|
|
|
[1] |
B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
|
[5] |
S.H. Kang, J.Y. Kim, H.S. Kim, et al., Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell, J. Photochem. Photobiol. A: Chem. 200 (2008) 294-300.
|
[7] |
T. Ishii, H. Kato, A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, J. Photochem. Photobiol. A: Chem. 163 (2004) 181-186.
|
[8] |
J. van de Lagemaat, N.G. Park, A.J. Frank, Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques, J. Phys. Chem. B 104 (2000) 2044-2052.
|
[12] |
B. Enright, D. Fitzmaurice, Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film, J. Phys. Chem. 100 (1996) 1027-1035.
|
[13] |
J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons, J. Am. Chem. Soc. 130 (2008) 13364-13372.
|
[2] |
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 110 (2010) 6595-6663.
|
[9] |
X. Lü, X. Mou, J. Wu, et al., Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: efficient electron injection and transfer, Adv. Funct. Mater. 20 (2010) 509-515.
|
[14] |
K.P. Wang, H. Teng, Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells, Appl. Phys. Lett. 91 (2007) 173102-173105.
|
[3] |
J. Yum, S. Nakade, D. Kim, S. Yanagida, Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides, J. Phys. Chem. B 110 (2006) 3215-3219.
|
[11] |
C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO, J. Phys. Chem. B 105 (2001) 5585-5588.
|
[4] |
A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629-634.
|
[6] |
K.M.P. Bandaranayake, I.M.K. Senevirathna, P.M.G.M.P. Weligamuwa, K. Tennakone, Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials, Coord. Chem. Rev. 248 (2004) 1277-1281.
|
[10] |
X. Feng, K. Shankar, M. Paulose, C. Grimes, Tantaluμ-doped titanium dioxide nanowire arrays for dye-sensitized solar cells with high open-circuit voltage, Angew. Chem. Int. Ed. 48 (2009) 8095-8098.
|
|
|
|