|
|
Ethylenediamine promoted the hydrogenative coupling of nitroarenes over Ni/C catalyst |
Youdi Yanga,b, Shaopeng Lia,b, Chao Xiea,b, Hangyu Liua,b, Yanyan Wanga,b, Qingqing Meia, Huizhen Liua,b, Buxing Hana,b |
a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
b School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Guide In this work, we found that ethylenediamine can enrich the electron state of Ni and make the azobenzene easily desorb from the surface of the catalyst, which effectively inhibits the further hydrogenation to aniline and greatly improves the selectivity of azobenzene. When the ratio of Ni and ethylenediamine is 1:10, the yield of the azobenzene can reach 95.5%. |
|
Abstract Azobenzene and its derivatives are key raw materials and it is an environmentally friendly method for the preparation of azobenzene by hydrogenative coupling of nitrobenzene. The development of nickel based catalyst for organic transformations is of importance because of its relatively low cost and toxicity. In this work, we found that ethylenediamine can enrich the electron state of Ni and make the azobenzene easily desorb from the surface of the catalyst, which inhibits the hydrogenation of azobenzene to aniline. The selectivity of azobenzene is greatly improved. When the ratio of Ni and ethylenediamine is 1:10, the yield of the azobenzene can reach 95.5%.
|
Received: 06 December 2017
|
Fund:The authors thank the National Natural Science Foundation of China (No. 21603235) and the Recruitment Program of Global Youth Experts of China. |
Corresponding Authors:
Huizhen Liu, Buxing Han
E-mail: liuhz@iccas.ac.cn;hanbx@iccas.ac.cn
|
|
|
|
[1] |
G.X. Chen, C.F. Xu, X.Q. Huang, et al., Nat. Mater. 15(2016) 564-569.
|
[2] |
S. Jones, J. Qu, K. Tedsree, X.Q. Gong, S.C.E. Tsang, Angew. Chem. Int. Ed. 51(2012) 11275-11278.
|
[3] |
I. Cano, A.M. Chapman, A. Urakawa, P.W.N.M. Van Leeuwen, J. Am. Chem. Soc. 136(2014) 2520-2528.
|
[4] |
I. Cano, M.A. Huertos, A.M. Chapman, et al., J. Am. Chem. Soc. 137(2015) 7718-7727.
|
[5] |
K.R. Kahsar, D.K. Schwartz, J.W. Medlin, J. Am. Chem. Soc.136(136) (2014) 520-526.
|
[6] |
H. Liu, Q. Mei, Y. Wang, H. Liu, B. Han, Sci. China Chem. 59(2016) 1342-1347.
|
[7] |
J.B. Ernst, S. Muratsugu, F. Wang, M. Tada, F. Glorius, J. Am. Chem. Soc. 138(2016) 10718-10721.
|
[8] |
J.B. Ernst, C. Schwermann, G.I. Yokota, et al., J. Am. Chem. Soc. 139(2017) 9144-9147.
|
[9] |
A.K. Singh, J. Das, N. Majumdar, J. Am. Chem. Soc. 118(1996) 6185-6191.
|
[10] |
L. Hu, X. Cao, L. Chen, et al., Chem. Commun. 48(2012) 3445-3447.
|
[11] |
X. Liu, H.Q. Li, S. Ye, et al., Angew. Chem. Int. Ed. 53(2014) 7624-7628.
|
[12] |
L. Hu, X. Cao, L. Shi, et al., Org. Lett. 13(2011) 5640-5643.
|
[13] |
H. Liu, T. Jiang, B. Han, S. Liang, Y. Zhou, Science 326(2009) 1250-1252.
|
[14] |
L.M. Ombaka, P.G. Ndungu, V.O. Nyamori, RSC Adv. 5(2015) 109-122.
|
[15] |
W. Guo, H. Liu, S. Zhang, et al., Green Chem. 18(2016) 6222-6228.
|
[1] |
Si-Tai Zheng, Huan-Huan Yin, Zhao-Guang Ma, Nan-Li Sheng, Tian-Guang Zhan, Xiao-Yang Yan, Jiecheng Cui, Li-Juan Liu, Kang-Da Zhang. Low-molecular-weight photoresponsive supramulecular hydrogel based on a dicationic azobenzene-bridged pyridinium hydrogelator[J]. Chinese Chemical Letters, 2019, 30(03): 707-709. |
|
|
|
|