|
|
One-pot photoreduction to prepare NIR-absorbing plasmonic gold nanoparticles tethered by amphiphilic polypeptide copolymer for synergistic photothermal-chemotherapy |
Siqi Yanga, Linzhu Zhoua, Yue Sua, Rong Zhangb, Chang-Ming Donga,b |
a School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China;
b Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201400, China |
|
|
Guide We developed one-pot photoreduction strategy to fabricate the NIR-absorbing plasmonic PLC-b-PEO@Au NPs. It possessed strong NIR absorption at 700-1100 nm, an ultrahigh photothermal conversion efficiency of 62.1%, and good photostability. |
|
Abstract We developed one-pot photoreduction strategy to prepare near infrared light (NIR)-absorbing plasmonic gold nanoparticles (Au NPs) tethered by amphiphilic polypeptide copolymer poly(L-cysteine)-b-poly (ethylene oxide) (PLC-b-PEO). The PLC-b-PEO@Au NPs possessed strong NIR absorption at 700-1100 nm and ultrahigh photothermal conversion efficiency of 62.1%. Upon the NIR irradiation (808 nm, 2 W/cm2, 5 min), the PLC-b-PEO@Au NPs (1 mg/mL) sharply attained an elevation of 30.8℃ and the hyperthermia effect could efficiently kill cancer cells in vitro. As for the PT-CT treatment, the doxorubicin (DOX)-loaded nanoparticles of DOX-PLC-b-PEO@Au NPs gave a combination index of 0.9 compared to single chemotherapy (CT) or photothermal therapy (PT), demonstrating a synergistic effect.
|
Received: 29 December 2017
|
Fund:The National Natural Science Foundation of China (No. 21474061) and The Innovation Fund (No. IFPM2016B004) of Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus are appreciated. |
Corresponding Authors:
Rong Zhang, Chang-Ming Dong
E-mail: rongzhang@163.com;cmdong@sjtu.edu.cn
|
|
|
|
[1] |
X. Yang, M. Yang, B. Pang, et al., Chem. Rev. 115(2015) 10410-10488.
|
[2] |
W. Zhou, X. Gao, D. Liu, et al., Chem. Rev. 115(2015) 10575-10636.
|
[3] |
S. Lal, S.E. Clare, N.J. Halas, Acc. Chem. Res. 41(2008) 1842-1851.
|
[4] |
A. Liu, G. Wang, F. Wang, et al., Coord. Chem. Rev. 336(2017) 28-42.
|
[5] |
L. Cheng, C. Wang, L. Feng, et al., Chem. Rev. 114(2014) 10869-10939.
|
[6] |
Z. Zhang, J. Wang, C.Y. Chen, Adv. Mater. 25(2013) 3869-3880.
|
[7] |
R.F. Zhao, X.X. Han, Y.Y. Li, et al., ACS Nano 11(2017) 8103-8113.
|
[8] |
N. Zhang, D.X. Zhu, L. Feng, et al., J. Biomed. Nanotechnol. 13(2017) 134-143.
|
[9] |
H.F. Deng, Y. Dai, G.H. Ma, et al., Adv. Mater. 27(2015) 3645-3653.
|
[10] |
S. Chen, Q. Lei, W.X. Qiu, et al., Biomaterials 117(2017) 92-104.
|
[11] |
L. Wang, Y.Y. Yuan, S.D. Lin, et al., Biomaterials 78(2016) 40-49.
|
[12] |
X. Wu, L. Zhou, Y. Su, et al., Biomacromolecules 17(2016) 2489-2501.
|
[13] |
Q. Yang, J.R. Peng, Y. Xiao, et al., ACS Appl. Mater. Interfaces. 10(2018) 150-164.
|
[14] |
J.B. Song, P. Huang, H.W. Duan, et al., Acc. Chem. Res. 48(2015) 2506-2515.
|
[15] |
Y. Liu, Y. Liu, J. Yin, et al., Macromol. Rapid. Commun. 36(2015) 711-725.
|
[16] |
K. Jiang, D.A. Smith, A. Pinchuk, J. Phys. Chem. 117(2013) 27073-27080.
|
[17] |
S.E. And, M.A. Elsayed, J. Phys. Chem. 110(2006) 14014-14019.
|
[18] |
Y.F. Huang, S.C. Lu, Y.C. Huang, et al., Small 10(2014) 1939-1944.
|
[19] |
H. Cabral, N. Nishiyama, K. Kataoka, Acc. Chem. Res. 44(2011) 999-1008.
|
[20] |
C. Deng, J.T. Wu, R. Cheng, et al., Prog. Polym. Sci. 39(2014) 330-364.
|
[21] |
X. Wu, L. Zhou, Y. Su, et al., Polym. Chem. 7(2016) 5552-5562.
|
[22] |
B.W. Zhao, Z.X. Zhou, Y.Q. Shen, Chin. J. Polym. Sci. 34(2016) 94-103.
|
[23] |
Y. Bustami, M. Moo-Young, W.A. Anderson, Sensor. Actuat. B-Chem. 245(2017) 753-764.
|
[24] |
L. Ma, M. Kohli, A. Smith, ACS Nano 7(2013) 9518-9525.
|
|
|
|