|
|
Diamine anchored molecular junctions of oligo(phenylene ethynylene) cruciform |
Yuqing Liua,b,c,d, Marco Santellac, Zhiqiang Fana, Xintai Wangc, Xiangwei Jianga, Mogens Brøndsted Nielsenc, Kasper Nørgaardc, Bo W. Laursenc, Jingbo Lia, Zhongming Weia,b |
a State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China;
c Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark;
d Sino-Danish Center for Education and Research, Beijing 100049, China |
|
|
Guide Using diamine as anchoring group, the self-assembled monolayers (SAMs) based on oligo(phenylene ethynylene)s (OPEs) and cruciform OPEs with an extended tetrathiafulvalene (TTF) (OPE3 and OPE3-TTF) were successfully formed on the Au substrate and then utilized in molecular junctions by conductingprobe atomic force microscopy (CP-AFM). |
|
Abstract Using diamine as anchoring group, the self-assembled monolayers (SAMs) based on oligo(phenyleneethynylene)s (OPEs) and cruciform OPEs with an extended tetrathiafulvalene (TTF) (OPE3 and OPE3-TTF) were successfully formed on the Au substrate. The uniformity and stability of SAMs were confirmed through cyclic voltammetry (CV) and electrochemical reductive desorption. The investigation of transport properties of SAMs was achieved by conducting-probe atomic force microscopy (CP-AFM) with both Au and Pt tips. The results indicated that the conductance of OPE3-TTF was 17 and 46 times that of OPE3 for Au and Pt tips, respectively. Theoretical calculations are qualitatively consistent with the experimental results, suggesting that the diamine as anchoring group has a great potential in molecular electronics.
|
Received: 13 June 2017
|
Fund:This work was financially supported by the National Natural Science Foundation of China (Nos. 61571415, 61622406, 51502283), the National Key Research and Development Program of China (Nos. 2017YFA0207500, 2016YFB0700700), and the "Hundred Talents Program" of Chinese Academy of Sciences (CAS). |
Corresponding Authors:
Zhongming Wei
E-mail: zmwei@semi.ac.cn
|
|
|
|
[1] |
K. Moth-Poulsen, T. Bjornholm, Nat. Nanotechnol. 4(2009) 551-556.
|
[2] |
H. Song, M.A. Reed, T. Lee, Adv. Mater. 23(2011) 1583-1608.
|
[3] |
T. Li, M. Jevric, J.R. Hauptmann, et al., Adv. Mater. 25(2013) 4164-4170.
|
[4] |
Z. Zhang, T. Li, Chin. Chem. Lett. 27(2016) 1209-1222.
|
[5] |
D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Chem. Rev. 116(2016) 4318-4440.
|
[6] |
A. Cui, H. Dong, W. Hu, Small 11(2015) 6115-6141.
|
[7] |
C. Jia, A. Migliore, N. Xin, et al., Science 352(2016) 1443-1445.
|
[8] |
A. Cornia, P. Seneor, Nat. Mater. 16(2017) 505-506.
|
[9] |
M. Cinchetti, V.A. Dediu, L.E. Hueso, Nat. Mater. 16(2017) 507-515.
|
[10] |
J. Dong, H. Zhang, Chin. Chem. Lett. 27(2016) 1097-1104.
|
[11] |
Y. Zhen, H. Dong, L. Jiang, W. Hu, Chin. Chem. Lett. 27(2016) 1330-1338.
|
[12] |
T. Li, W. Hu, D. Zhu, Adv. Mater. 22(2010) 286-300.
|
[13] |
J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105(2005) 1103-1170.
|
[14] |
P. Moreno-Garcia, M. Gulcur, D.Z. Manrique, et al., J. Am. Chem. Soc.135(2013) 12228-12240.
|
[15] |
A. Tan, J. Balachandran, S. Sadat, et al., J. Am. Chem. Soc.133(2011) 8838-8841.
|
[16] |
F. Chen, X. Li, J. Hihath, Z. Huang, N. Tao, J. Am. Chem. Soc. 128(2006) 15874-15881.
|
[17] |
C.A. Martin, D. Ding, J.K. Sorensen, et al., J. Am. Chem. Soc. 130(2008) 13198-13199.
|
[18] |
L. Venkataraman, J.E. Klare, I.W. Tam, et al., Nano Lett. 6(2006) 458-462.
|
[19] |
I.S. Kristensen, D.J. Mowbray, K.S. Thygesen, K.W. Jacobsen, J. Phys.:Condens. Matter 20(2008) 374101.
|
[20] |
M.S. Hybertsen, L. Venkataraman, J.E. Klare, et al., J. Phys.:Condens. Matter 20(2008) 374115.
|
[21] |
Q. Lu, K. Liu, H. Zhang, et al., ACS Nano 3(2009) 3861-3868.
|
[22] |
W. Hong, D.Z. Manrique, P. Moreno-Garcia, et al., J. Am. Chem. Soc. 134(2012) 2292-2304.
|
[23] |
M.T. Gonzalez, A. Diaz, E. Leary, et al., J. Am. Chem. Soc.135(2013) 5420-5426.
|
[24] |
M.T. Gonzalez, X. Zhao, D.Z. Manrique, et al., J. Phys. Chem. C 118(2014) 21655-21662.
|
[25] |
C. Jia, J. Wang, C. Yao, et al., Angew. Chem. Int. Ed. 52(2013) 8666-8670.
|
[26] |
Y. Cao, S. Dong, S. Liu, et al., Angew. Chem. Int. Ed. 51(2012) 12228-12232.
|
[27] |
X. Guo, Adv. Mater. 25(2013) 3397-3408.
|
[28] |
X. Guo, A.A. Gorodetsky, J. Hone, J.K. Barton, C. Nuckolls, Nat. Nanotechnol. 3(2008) 163-167.
|
[29] |
S. Liu, G.H. Clever, Y. Takezawa, et al., Angew. Chem. Int. Ed. 50(2011) 8886-8890.
|
[30] |
H. Wen, W. Li, J. Chen, et al., Sci. Adv. 2(2016) e1601113.
|
[31] |
C. Jia, J. Wang, C. Yao, Y. Cao, et al., Angew. Chem. Int. Ed. 52(2013) 8666-8670.
|
[32] |
L. Gao, L.-L. Li, X. Wang, et al., Chem. Sci. 6(2015) 2469-2473.
|
[33] |
L.A. Bumm, J.J. Arnold, M.T. Cygan, et al., Science 271(1996) 1705-1707.
|
[34] |
J.L. Zhang, J.Q. Zhong, J.D. Lin, et al., Chem. Soc. Rev. 44(2015) 2998-3022.
|
[35] |
L.J. Wang, A. Yong, K.G. Zhou, et al., Chem.-Asian J. 8(2013) 1901-1909.
|
[36] |
Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, et al., Science 292(2001) 2303-2307.
|
[37] |
S.H. Choi, C.D. Frisbie, J. Am. Chem. Soc. 132(2010) 16191-16201.
|
[38] |
J. Liao, J.S. Agustsson, S. Wu, et al., Nano Lett. 10(2010) 759-764.
|
[39] |
M. Vestergaard, K. Jennum, J.K. Sorensen,K. Kilsa, M.B. Nielsen, J. Org. Chem. 73(2008) 3175-3183.
|
[40] |
J.K. Sorensen, M. Vestergaard, A. Kadziola, K. Kilsa, M.B. Nielsen, Org. Lett. 8(2006) 1173-1176.
|
[41] |
H. Lissau, R. Frisenda, S.T. Olsen, et al., Nat. Commun. 6(2015) 10233-10240.
|
[42] |
K. Jennum, M. Vestergaard, A.H. Pedersen, et al., Synthesis 4(2011) 539-548.
|
[43] |
Z. Wei, T. Li, K. Jennum, et al., Langmuir 28(2012) 4016-4023.
|
[44] |
C.R. Parker, Z. Wei, C.R. Arroyo, et al., Adv. Mater. 25(2013) 405-409.
|
[45] |
C.R.Parker,E.Leary,R.Frisenda,etal.,J.Am.Chem.Soc.136(2014)16497-16507.
|
[46] |
Z. Wei, T. Hansen, M. Santella, et al., Adv. Funct. Mater. 25(2015) 1700-1708.
|
[47] |
Z. Wang, H. Dong, T. Li, et al., Nat. Commun. 6(2015) 8478-8487.
|
[48] |
Y. Kim, T.J. Hellmuth, M. Buerkle, F. Pauly, E. Scheer, ACS Nano 5(2011) 4104-4111.
|
[49] |
D. Kruger, R. Rousseau, H. Fuchs, D. Marx, Angew. Chem. Int. Ed. 42(2003) 2251-2253.
|
[50] |
S.Y. Quek, L. Venkataraman, H.J. Choi, et al., Nano Lett. 7(2007) 3477-3482.
|
[51] |
H. Valkenier, E.H. Huisman, P.A. van Hal, et al., J. Am. Chem. Soc. 133(2011) 4930-4939.
|
[52] |
D. Fracasso, H. Valkenier, J.C. Hummelen, G.C. Solomon, R.C. Chiechi, J. Am. Chem. Soc. 133(2011) 9556-9563.
|
[53] |
J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63(2001) 245407-245419.
|
[54] |
M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65(2002) 165401-165417.
|
[55] |
M. Buttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31(1985) 6207-6215.
|
[56] |
J. Fock, M. Leijnse, K. Jennum, et al., Phys. Rev. B 86(2012) 6244-6247.
|
|
|
|