|
|
Structure of Pro4H+ investigated by infrared photodissociation (IRPD) spectroscopy and theoretical calculations |
Ru-Xia Fenga, Lei Mua, Shu-Mei Yanga, Xiang-Lei Konga,b |
a The State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China;
b Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China |
|
|
Abstract Combining with electrospray ionization (ESI) mass spectrometry, infrared photodissociation (IRPD) spectroscopy is a powerful method to study structures of cluster ions in the gas phase. In this paper, infrared photodissociation spectrum of Pro4H+ in the range of 2700-3600 cm-1 was obtained experimentally. Both theoretically predicted spectra of the two most stable isomers of Pro4-1 and Pro4-2 obtained at the level of M062X/6-31+G(d, p) are in good consistent with the experimental results. The two isomers have similar structures and close energies. Both of them only consist of zwitterionic units, indicating the strong salt-bridged interactions inside the clusters. And the calculated collision cross section (ccs) of Pro4-1 is found to be very close to the experimental result previously reported.
|
Received: 15 January 2016
Published: 04 March 2016
|
Fund:Financial support from the National Natural Science Foundation of China (Nos. 21172121, 21475065) and the Fundamental Research Funds for the Central Universities is gratefully acknowledged. |
Corresponding Authors:
Xiang-Lei Kong
E-mail: kongxianglei@nankai.edu.cn
|
|
|
|
[1] |
H.B. Oh, C. Lin, H.Y. Hwang, H. Zhai, et al., Infrared photodissociation spectroscopy of electrosprayed ions in a Fourier transform mass spectrometer, J. Am. Chem. Soc. 127(2005) 4076-4083.
|
[2] |
J.R. Eyler, Infrared multiple photon dissociation spectroscopy of ions in penning traps, Mass Spectrom. Rev. 28(2009) 448-467.
|
[3] |
N.C. Polfer, J. Oomens, Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance, Mass Spectrom. Rev. 28(2009) 468-494.
|
[4] |
N.C. Polfer, Infrared multiple photon dissociation spectroscopy of trapped ions, Chem. Soc. Rev. 40(2011) 2211-2221.
|
[5] |
R. Wu, T.B. McMahon, Infrared multiple photon dissociation spectra of proline and glycine proton-bound homodimers. Evidence for zwitterionic structure, J. Am. Chem. Soc. 129(2007) 4864-4865.
|
[6] |
X.L. Kong, I.A. Tsai, S. Sabu, et al., Progressive stabilization of zwitterionic structures in[H(Ser)2-8] + studied by infrared photodissociation spectroscopy, Angew. Chem. Int. Ed. 45(2006) 4130-4134.
|
[7] |
M.F. Bush, J. Oomens, R.J. Saykally, E.R. Williams, Effects of alkaline earth metal ion complexation on amino acid zwitterion stability:results from infrared action spectroscopy, J. Am. Chem. Soc. 130(2008) 6463-6471.
|
[8] |
R.C. Dunbar, J.D. Steill, J. Oomens, Cationized phenylalanine conformations characterized by IRMPD and computation for singly and doubly charged ions, Phys. Chem. Chem. Phys. 12(2010) 13383-13393.
|
[9] |
R. Wu, R.A. Marta, J.K. Matens, K.R. Eldridge, T.B. McMahon, Experimental and theoretical investigation of the proton-bound dimer of lysine, J. Am. Soc. Mass. Spectrom. 22(2011) 1651-1659.
|
[10] |
U.J. Lorenz, T.R. Rizzo, Multiple isomers and protonation sites of the phenylalanine/serine dimer, J. Am. Chem. Soc. 134(2012) 11053-11055.
|
[11] |
Y.J. Alahmadi, A. Gholami, T.D. Fridgen, The protonated and sodiated dimers of proline studied by IRMPD spectroscopy in the N-H and O-H stretching region and computational methods, Phys. Chem. Chem. Phys. 16(2014) 26855-26863.
|
[12] |
P.B. Armentrout, M.T. Rodgers, J. Oomens, J.D. Steill, Infrared multiphoton dissociation spectroscopy of cationized serine:effects of alkali-metal cation size on gas-phase conformation, J. Phys. Chem. A 112(2008) 2258-2267.
|
[13] |
X.L. Kong, C. Lin, G. Infusini, et al., Numerous isomers of serine octamer ions characterized by infrared photodissociation spectroscopy, ChemPhysChem 10(2009) 2603-2606.
|
[14] |
G.H. Liao, Y.J. Yang, X.L. Kong, Chirality effects on proline-substituted serine octamers revealed by infrared photodissociation spectroscopy, Phys. Chem. Chem. Phys. 16(2014) 1554-1562.
|
[15] |
X.L. Kong, Reinvestigation of the structure of protonated lysine dimer, J. Am. Soc. Mass. Spectrom. 25(2014) 1-5.
|
[16] |
H. Yin, X.L. Kong, Structure of protonated threonine dimers in the gas phase:saltbridged or charge-solvated, J. Am. Soc. Mass. Spectrom. 26(2015) 1455-1461.
|
[17] |
R.G. Cooks, D. Zhang, K.J. Koch, F.C. Gozzo, M.N. Eberlin, Chiroselective selfdirected octamerization of serine:implications for homochirogenesis, Anal. Chem. 73(2001) 3646-3655.
|
[18] |
Z. Takats, S.C. Nanita, R.G. Cooks, G. Schlosser, K. Vekey, Atmospheric pressure gas-phase H/D exchange of serine octamers, Anal. Chem. 75(2003) 6147-6154.
|
[19] |
Z. Takats, S.C. Nanita, R.G. Cooks, Serine octamer reactions:indicators of prebiotic relevance, Angew. Chem. Int. Ed. 42(2003) 3521-3523.
|
[20] |
S.C. Nanita, R.G. Cooks, Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions, Angew. Chem. Int. Ed. 45(2006) 554-559.
|
[21] |
R.R. Julian, S. Myung, D.E. Clemmer, Do homochiral aggregates have an entropic advantage? J. Phys. Chem. B 109(2005) 440-444.
|
[22] |
S. Myung, K.P. Lorton, S.I. Merenbloom, et al., Evidence for spontaneous resolution of icosahedral proline, J. Am. Chem. Soc. 128(2007) 15988-15989.
|
[23] |
A.E. Holliday, N. Atlasevich, S. Myung, et al., Oscillations of chiral preference in proline clusters, J. Phys. Chem. A 117(2013) 1035-1041.
|
[24] |
A.E. Holliday, N. Atlasevich, S.J. Valentine, D.E. Clemmer, Chirality and packing in small proline clusters, J. Phys. Chem. A 116(2012) 11442-11446.
|
[25] |
R.B. Cody, R.E. Hein, S.D. Goodman, A.G. Marshall, Stored waveform inverse fourier transform excitation for obtaining increased parent ion selectivity in collisionally activated dissociation:preliminary results, Rapid Commun. Mass Spectrom. 1(1987) 99-102.
|
[26] |
X. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functional, Theor. Chem. Account. 120(2008) 215-241.
|
[27] |
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian09, Gaussian Inc, Wallingford, CT, 2009.
|
[28] |
A.A. Shvartsburg, M.F. Jarrold, An exact hard-spheres scattering model for the mobilities of polyatomic ions, Chem. Phys. Lett. 261(1996) 86-91.
|
[29] |
M.F. Mesleh, J.M. Hunter, A.A. Shvartsburg, G.C. Schatz, M.F. Jarrold, Structural information from ion mobility measurements:effects of the long-range potential, J. Phys. Chem. 100(1996) 16082-16086.
|
[30] |
Z. Slanina, Equilibriumisomericmixtures:potential energy hypersurfaces as the origin of the overall thermodynamics and kinetics, Int. Rev. Phys. Chem. 6(1987) 251-267.
|
|
|
|