|
|
Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride |
Xin-Yue Hu, Yong Chen, Yu Liu |
Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China |
|
|
Guide A supramolecular nanoparticle was fabricated based on the aggregation of amphiphilic p-sulfonatocalixarene induced by selenocystamine dihydrochloride (Se-Cys). Owing to the property of Se-Cys, the nanoparticles showed the redox-responsive disassembly behaviors with the addition of H2O2 and GSH |
|
Abstract A supramolecular nanoparticle was fabricated based on the aggregation of amphiphilic p-sulfonatocalixarene induced by selenocystamine dihydrochloride (Se-Cys). The application of Se-Cys remarkably decreases the critical aggregation concentration of sulfonatocalixarene, and the resultant spherical nanoparticle was investigated by fluorescence spectroscopy, dynamic laser scattering, and transmission electron microscopy. Owing to the property of Se-Cys, the nanoparticles showed the redoxresponsive disassembly behaviors with the addition of H2O2 and GSH.
|
Received: 10 December 2014
Published: 10 January 2015
|
Fund: We thank “973” Program (No. 2011CB 932502) and NNSFC (Nos. 91227107, 21432004 and 21272125) for financial support. |
Corresponding Authors:
Yu Liu
E-mail: yuliu@nankai.edu.cn
|
|
|
|
[1] |
Y. Lu, W. Sun, Z. Gu, Stimuli-responsive nanomaterials for therapeutic protein delivery, J. Control. Release 194 (2014) 1-19.
|
[2] |
S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater. 12 (2013) 991-1003.
|
[3] |
E.G. Kelley, J.N.L. Albert, M.O. Sullivan, T.H. Epps, Stimuli-responsive copolymer solution and surface assemblies for biomedical applications, Chem. Soc. Rev. 42 (2013) 7057-7071.
|
[4] |
J. Chen, X. Qiu, J. Ouyang, et al., pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery, Biomacromolecules 12 (2011) 3601-3611.
|
[5] |
D.J. Fu, Y. Jin, M.Q. Xie, et al., Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity, Chin. Chem. Lett. 25 (2014) 1435-1440.
|
[6] |
D. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation, Langmuir 28 (2012) 2327-2331.
|
[7] |
L.X. Yu, Y. Liu, S.C. Chen, Y. Guan, Y.Z. Wang, Reversible photoswitching aggregation and dissolution of spiropyranfunctionalized copolymer and light-responsive FRET process, Chin. Chem. Lett. 25 (2014) 389-396.
|
[8] |
T. Ta, A.J. Convertine, C.R. Reyes, P.S. Stayton, T.M. Porter, Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin, Biomacromolecules 11 (2011) 1915-1920.
|
[9] |
G. von Maltzahn, T.J. Harris, J.H. Park, et al., Nanoparticle self-assembly gated by logical proteolytic triggers, J. Am. Chem. Soc. 129 (2007) 6064-6065.
|
[10] |
L. Dong, S. Xia, Z. Huang, et al., A pH/enzyme-responsive tumor-specific delivery system for doxorubicin, Biomaterials 31 (2010) 6309-6316.
|
[11] |
C. Wei, J. Guo, C. Wang, Dual stimuli-responsive polymeric micelles exhibiting “and” logic gate for controlled release of adriamycin, Macromol. Rapid Commun. 32 (2011) 451-455.
|
[12] |
R. Boyd, Selenium stories, Nat. Chem. 3 (2011) 570.
|
[13] |
G. Mugesh, W.W. du Mont, H. Sies, Chemistry of biologically important synthetic organoselenium compounds, Chem. Rev. 101 (2001) 2125-2180.
|
[14] |
H. Xu, W. Cao, X. Zhang, Selenium-containing polymers: promising biomaterials for controlled release and enzymer minics, Acc. Chem. Res. 46 (2013) 1647-1658.
|
[15] |
N.K. Kildahl, Bond energy data summarized, J. Chem. Educ. 72 (1995) 423-424.
|
[16] |
N. Ma, Y. Li, H. Xu, Z. Wang, X. Zhang, Dual redox responsive assemblies formed from diselenide block copolymers, J. Am. Chem. Soc. 132 (2010) 442-443.
|
[17] |
N. Ma, Y. Li, H. Ren, et al., Selenium-containing block copolymers and their oxidation-responsive aggregates, Polym. Chem. 1 (2010) 1609-1614.
|
[18] |
W. Cao, Y. Li, Y. Yi, et al., Coordination-responsive selenium containing polymer micelles for controlled drug release, Chem. Sci. 3 (2012) 3403-3408.
|
[19] |
N. Ma, H. Xu, L. An, et al., Radiation-sensitive diselenide block copolymer micellar aggregates: toward the combination of radiotherapy and chemotherapy, Langmuir 27 (2011) 5874-5878.
|
[20] |
P. Han, N. Ma, H. Ren, et al., Oxidation-responsive micelles based on a seleniumcontaining polymeric superamphiphile, Langmuir 26 (2010) 14414-14418.
|
[21] |
D.S. Guo, Y. Liu, Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications, Acc. Chem. Res. 47 (2014) 1925-1934.
|
[22] |
D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, Cholinesterase-responsive supramolecular vesicle, J. Am. Chem. Soc. 134 (2012) 10244-10250.
|
[23] |
K. Wang, D.S. Guo, X. Wang, Y. Liu, Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonato calixarene and its controllable release of doxorubicin, ACS Nano 5 (2011) 2880-2894.
|
[24] |
B.P. Jiang, D.S. Guo, Y.C. Liu, K.P. Wang, Y. Liu, Photomodulated fluorescence of supramolecular assemblies of sulfonato calixarenes and tetraphenylethene, ACS Nano 8 (2014) 1609-1618.
|
[25] |
C. Zhou, X. Chen, Y. Yun, J. Wang, J. Huang, Reversible transition between SDS@2β-CD microtubes and vesicles triggered by temperature, Langmuir 30 (2014) 3381-3386.
|
[26] |
C. Zhou, X. Chen, Q. Zhao, et al., Self-assembly of nonionic surfactant tween 20@2β-CD inclusion complexes in dilute solution, Langmuir 23 (2013) 13175- 13182.
|
[27] |
G. Yu, X. Zhou, Z. Zhang, et al., Pillar[6] arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning, J. Am. Chem. Soc. 134 (2012) 19489-19497.
|
[28] |
X.Y. Hu, K. Jia, Y. Cao, et al., Dual pH- and photo-responsive supramolecular nanocarriers based on water-soluble pillar[6] arene and different azobenzene derivatives for intracellular anticancer drug delivery, Chem. Eur. J. (2015), http://dx.doi.org/10.1002/chem.201405095.
|
[29] |
Y. Cao, X.Y. Hu, Y. Li, et al., Multistimuli-responsive supramolecular vesicles based on water-soluble pillar[6] arene and SAINT complexation for controllable drug release, J. Am. Chem. Soc. 136 (2014) 10762-10769.
|
[30] |
J. Tian, T.Y. Zhou, S.C. Zhang, et al., Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals, Nat. Commun. 5 (2014) 5574.
|
[31] |
L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5] pseudorotaxane based on cucurbit[8] uril and a-cyclodextrin, Chin. Chem. Lett. 24 (2013) 949-952.
|
[32] |
N. Basilio, L. Garcia-Rio, Calixarene-based surfactants: conformational-dependent solvation shells for the alkyl chains, ChemPhysChem 13 (2012) 2368-2376.
|
[33] |
P.J.G. Coutinho, E.M.S. Castanheira, M.C. Rei, M.E.C.D. Real Oliveira, Nile red and DCM fluorescence anisotropy studies in C12E7/DPPC mixed systems, J. Phys. Chem. B 106 (2002) 12841-12846.
|
[34] |
A. Fredga, Organic selenium chemistry, Ann. N. Y. Acad. Sci. 192 (1972) 1-9.
|
|
|
|