|
|
Multifunctional semitransparent organic solar cells with excellent infrared photon rejection |
Xue Lia, Ruoxi Xiab, Kangrong Yana, Hin-Lap Yipb, Hongzheng Chena, Chang-Zhi Lia |
a State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
b State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China |
|
|
Abstract Semitransparent organic solar cells (ST-OSCs) have the potentials to open promising applications that differ from those of conventional inorganic ones, such as see-through power windows with both energy generation and heat insulation functions. However, to achieve so, there remain significant challenges, especially for balancing critical parameters, such as power conversion efficiency (PCE), average visible transparency (AVT) and low energy infrared photon radiation rejection (IRR) to realize the full potentials of ST-OSCs. Herein, we demonstrate the new design of ST-OSCs through the rational integration of organic materials, transparent electrode and infrared photon reflector in one device. With the assistance of optical simulation, new ST-OSCs with precise layout exhibit state-of-art performance, with near 30% AVT and PCE of 7.3%, as well as an excellent IRR of over 93% (780-2500 nm), representing one of best multifunctional ST-OSCs with promising perspective for window application.
|
Received: 04 August 2019
|
Fund: This research was funded by Ministry of Science and Technology (No. 2017YFA0206600), [19_TD$DIF]National Natural Science Foundation of China (Nos. 21722404, 21674093, 21734008, 21761132001 and 91633301), International Science and Technology Cooperation Program of China (ISTCP, No. 2016YFE0102900) [20_TD$DIF]and supported by the Fundamental Research Funds for the Central Universities (No. 2018XZZX002-16). C.-Z. Li thanks the support by Zhejiang Natural Science Fund for Distinguished Young Scholars (No. LR17E030001). |
|
|
|
[1] |
Q. Xue, R. Xia, C.J. Brabec, H.L. Yip, Energy Environ. Sci. 11(2018) 1688-1709.
|
[2] |
R. Xia, C.J. Brabec, H.L. Yip, Y. Cao, Joule 3(2019) 2241-2254.
|
[3] |
J. Zhang, G. Xu, F. Tao, et al., Adv. Mater. 31(2019) e1807159.
|
[4] |
Y. Liu, P. Cheng, T. Li, et al., ACS Nano 13(2019) 1071-1077.
|
[5] |
H. Shi, R. Xia, G. Zhang, et al., Adv. Energy Mater. 9(2019) 1803438.
|
[6] |
D. Landerer, D. Bahro, H. Rçhm, et al., Energy Technol. 5(2017) 1936-1945.
|
[7] |
H. Kim, H.S. Kim, J. Ha, et al., Adv. Energy Mater. 6(2016) 1502466.
|
[8] |
W. Yu, L. Shen, P. Shen, et al., ACS Appl. Mater. Interfaces 6(2014) 599-605.
|
[9] |
J.Y. Lee, K.T. Lee, S. Seo, L.J. Guo, Sci. Rep. 4(2014) 4192.
|
[10] |
C.Y. Chang, L. Zuo, H.L. Yip, et al., Adv. Energy Mater. 4(2014) 1301645.
|
[11] |
W. Yu, L. Shen, P. Shen, et al., Sol. Energy Mater. Sol. Cells 117(2013) 198-202.
|
[12] |
R. Betancur, P. Romero-Gomez, A. Martinez-Otero, et al., Nat. Photonics 7(2013) 995-1000.
|
[13] |
Z. Tang, Z. George, Z. Ma, et al., Adv. Energy Mater. 2(2012) 1467-1476.
|
[14] |
K.S. Chen, J.F. Salinas, H.L. Yip, et al., Energy Environ. Sci. 5(2012) 9551-9557.
|
[15] |
Z. Xiao, X. Jia, L. Ding, Sci. Bull. 62(2017) 1562-1564.
|
[16] |
L. Liu, Q. Liu, Z. Xiao, et al., Sci. Bull. 64(2019) 1083-1086.
|
[17] |
L. Meng, Y. Zhang, X. Wan, et al., Science 361(2018) 1094-1098.
|
[18] |
Y. Cui, C. Yang, H. Yao, et al., Adv. Mater. 29(2017) 1703080.
|
[19] |
F. Ullah, S. Qian, W. Yang, et al., Chin. Chem. Lett. 28(2017) 2223-2226.
|
[20] |
J.Q. Xu, W. Liu, S.Y. Liu, et al., Sci. China Chem. 60(2017) 561-569.
|
[21] |
B. Wang, W. Liu, H. Li, et al., J. Mater. Chem. A 5(2017) 9396-9401.
|
[22] |
Z. Zhang, W. Liu, T. Rehman, et al., J. Mater. Chem. A 5(2017) 9649-9654.
|
[23] |
T. Li, Y. Zhai, S. He, et al., Science 364(2019) 760-763.
|
[24] |
C. Sun, R. Xia, H. Shi, et al., Joule 2(2018) 1816-1826.
|
[25] |
P. Shen, G. Wang, B. Kang, et al., ACS Appl. Mater. Interfaces 10(2018) 6513-6520.
|
[26] |
J.H. Lu, Y.H. Lin, B.H. Jiang, et al., Adv. Funct. Mater. 28(2018) 1703398.
|
[27] |
Y. Kim, J. Son, S. Shafian, et al., Adv. Opt. Mater. 6(2018) 1800051.
|
[28] |
S.Y. Chang, P. Cheng, G. Li, Y. Yang, Joule 2(2018) 1039-1054.
|
[29] |
G. Xu, L. Shen, C. Cui, et al., Adv. Funct. Mater. 27(2017) 1605908.
|
[30] |
Q. Liu, P. Romero-Gomez, P. Mantilla-Perez, et al., Adv. Energy Mater. 7(2017) 1700356.
|
[31] |
W. Yu, L. Shen, X. Jia, et al., RSC Adv. 5(2015) 54638-54644.
|
[32] |
F. Pastorelli, P. Romero-Gomez, R. Betancur, et al., Adv. Energy Mater. 5(2015) 1400614.
|
[33] |
J. Huang, C.Z. Li, C.C. Chueh, et al., Adv. Energy Mater. 5(2015) 1500406.
|
[34] |
L. Shen, S. Ruan, W. Guo, et al., Sol. Energy Mater. Sol. Cells 97(2012) 59-63.
|
[35] |
F.X. Chen, J.Q. Xu, Z.X. Liu, et al., Adv. Mater. 30(2018) e1803769.
|
[36] |
K. Yan, Z.X. Liu, X. Li, et al., Org. Chem. Front. 5(2018) 2845-2851.
|
[37] |
K. Yan, C.Z. Li, Macromol. Chem. Phys. 220(2019) 1900084.
|
[38] |
C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Nat. Energy 2(2017) 849-860.
|
[39] |
R. Xia, H. Gu, S. Liu, et al., Sol. RRL 3(2019) 1800270.
|
|
|
|