|
|
Molecularly near-infrared fluorescent theranostics for in vivo tracking tumor-specific chemotherapy |
Chenxu Yan, Limin Shi, Zhiqian Guo, Weihong Zhu |
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China |
|
|
Guide In this review, we summary the design concepts and strategies of NIR fluorescent theranostics for the senserelease in living systems. In particular, molecularly NIR fluorescent theranostic prodrug is elucidated to address current challenges of real-time bioimaging and tumor-specific chemotherapy for personalized treatment. |
|
Abstract Molecularly near-infrared (NIR) theranostics, combining in vivo sensing and tumor-specific therapeutic capability within one molecular system, have received considerable attention in recent years. Compared with the visible fluorescence imaging, NIR imaging (emission wavelength at 650-900 nm) possesses unique advantages including the minimum photodamage to biological samples, deep penetration, and low interference from auto-fluorescence. In over past decades, there has been an explosive development in the design of molecular imaging contrasts and imaging-guided therapeutics. In this review, we have sumarried the strategies of the NIR theranostics for imaging and tumor-specific chemotherapy applications in living systems. It is noted that the molecularly NIR theranostic design strategy could address current challenges of real-time in vivo sense-and-release for the intelligent biosensing and personalized treatment.
|
Received: 06 August 2019
|
Fund: This work was supported by the National Natural Science Foundation of China (Nos. 21788102, 21421004, 21636002, 21622602 and 21908060), National Key Research and Development Program (No. 2017YFC0906902), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX03), the Innovation Program of Shanghai Municipal Education Commission, Scientific Committee of Shanghai (No. 15XD1501400), and China Postdoctoral Science Foundation (No. 2019M651417). |
Corresponding Authors:
Zhiqian Guo
E-mail: guozq@ecust.edu.cn
|
About author:: Prof. Zhiqian Guo received his B.S. degree in Fine Chemicals from Zheng Zhou University in 2002. Then, he received his pH.D. degree of Applied Chemistry from East China University of Science & Technology (ECUST) in 2010(Advisor:Professor Weihong Zhu). From 2011 to 2012, he worked with Prof. Dr. Juyoung Yoon (Ewha Womans University/Korea) on organic chemistry. He became a full professor at the School of Chemistry and Molecular Engineering at ECUST in 2017. He was a recipient of NSFC for Excellent Young Grants (2016), and Cheung Kong Young Scholar (Younger Project) (2017). His current research interests focus on functional chromophores, including fluorescent sensors, drug delivery system and molecular logic devices. |
|
|
|
[1] |
M.H. Lee, J.L. Sessler, J.S. Kim, Acc. Chem. Res. 48(2015) 2935-2946.
|
[2] |
M.H. Lee, Z. Yang, C.W. Lim, et al., Chem. Rev. 113(2013) 5071-5109.
|
[3] |
R. Kumar, W.S. Shin, K. Sunwoo, et al., Chem. Soc. Rev. 44(2015) 6670-6683.
|
[4] |
M.H. Lee, A. Sharma, M.J. Chang, et al., Chem. Soc. Rev. 47(2018) 28-52.
|
[5] |
X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 47(2018) 1174-1188.
|
[6] |
C. Chen, H. Ou, R. Liu, D. Ding, Adv. Mater. 31(2019) 1806331.
|
[7] |
B. Gu, W. Wu, G. Xu, et al., Adv. Mater. 29(2017) 1701076.
|
[8] |
F. Hu, S. Xu, B. Liu, Adv. Mater. 30(2018) 1801350.
|
[9] |
D. Li, W. Qin, B. Xu, J. Qian, B.Z. Tang, Adv. Mater. 29(2017) 1703643.
|
[10] |
S. Bhuniya, S. Maiti, E.J. Kim, et al., Angew. Chem. Int. Ed. 53(2014) 4469-4474.
|
[11] |
X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Angew. Chem. Int. Ed. 57(2018) 11522-11531.
|
[12] |
X. Li, D. Lee, J.D. Huang, J. Yoon, Angew. Chem. Int. Ed. 57(2018) 9885-9890.
|
[13] |
A. Sharma, M.G. Lee, H. Shi, et al., Chem 4(2018) 2370-2383.
|
[14] |
A. Sharma, J.F. Arambula, S. Koo, et al., Chem. Soc. Rev. 48(2019) 771-813.
|
[15] |
H.S. Jung, J. Han, H. Shi, et al., J. Am. Chem. Soc. 139(2017) 7595-7602.
|
[16] |
H.S. Jung, J.H. Lee, K. Kim, et al., J. Am. Chem. Soc. 139(2017) 9972-9978.
|
[17] |
M.H. Lee, E.J. Kim, H. Lee, et al., J. Am. Chem. Soc. 138(2016) 16380-16387.
|
[18] |
S. Liu, X. Zhou, H. Zhang, et al., J. Am. Chem. Soc. 141(2019) 5359-5368.
|
[19] |
L. Xu, L. Jiang, M. Drechsler, et al., J. Am. Chem. Soc. 136(2014) 1942-1947.
|
[20] |
X. Xu, P.E. Saw, et al., Adv. Mater. 29(2017) 1700141.
|
[21] |
F. Hu, D. Mao, Kenry, et al., Angew. Chem. Int. Ed. 57(2018) 10182-10186.
|
[22] |
K.G. Chernov, T.A. Redchuk, E.S. Omelina, V.V. Verkhusha, Chem. Rev. 117(2017) 6423-6446.
|
[23] |
Y. Ding, W.H. Zhu, Y. Xie, Chem. Rev. 117(2017) 2203-2256.
|
[24] |
Y. Cai, Z. Wei, C. Song, et al., Chem. Soc. Rev. 48(2019) 22-37.
|
[25] |
F. Deng, Z. Xu, Chin. Chem. Lett. (2018), doi:http://dx.doi.org/10.1016/j.cclet.2018.12.012.
|
[26] |
A.P. Gorka, R.R. Nani, M.J. Schnermann, Acc. Chem. Res. 51(2018) 3226-3235.
|
[27] |
H. Chen, B. Dong, Y. Tang, W. Lin, Acc. Chem. Res. 50(2017) 1410-1422.
|
[28] |
Y. Jiang, K. Pu, Acc. Chem. Res. 51(2018) 1840-1849.
|
[29] |
E.A. Owens, M. Henary, G. El Fakhri, H.S. Choi, Acc. Chem. Res. 49(2016) 1731-1740.
|
[30] |
S. He, J. Song, J. Qu, Z. Cheng, Chem. Soc. Rev. 47(2018) 4258-4278.
|
[31] |
X. Luo, J. Li, J. Zhao, et al., Chin. Chem. Lett. 30(2019) 839-846.
|
[32] |
H.J. Knox, J. Chan, Acc. Chem. Res. 51(2018) 2897-2905.
|
[33] |
Q. Miao, K. Pu, Adv. Mater. 30(2018) 1801778.
|
[34] |
L. Wang, W. Du, Z. Hu, et al., Angew. Chem. Int. Ed. (2019), doi:http://dx.doi.org/10.1002/anie.201901061.
|
[35] |
Z. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 43(2014) 16-29.
|
[36] |
M. Montalti, A. Cantelli, G. Battistelli, Chem. Soc. Rev. 44(2015) 4853-4921.
|
[37] |
S.M. Fateminia, Z. Wang, C.C. Goh, et al., Adv. Mater. 29(2017) 1604100.
|
[38] |
X. Jia, Y. Zhang, Y. Zou, et al., Adv. Mater. 30(2018) 1704490.
|
[39] |
D. Venkatakrishnarao, Y.S. Narayana, M.A. Mohaiddon, et al., Adv. Mater. 29(2017) 1605260.
|
[40] |
Z. Guo, W. Zhu, L. Shen, H. Tian, Angew. Chem. Int. Ed. 46(2007) 5549-5553.
|
[41] |
A. Shao, Y. Xie, S. Zhu, et al., Angew. Chem. Int. Ed. 54(2015) 7275-7280.
|
[42] |
Z. Guo, W. Zhu, H. Tian, Chem. Comm. 48(2012) 6073-6084.
|
[43] |
W. Sun, J. Fan, C. Hu, et al., Chem. Comm. 49(2013) 3890-3892.
|
[44] |
W. Zhu, X. Huang, Z. Guo, et al., Chem. Comm. 48(2012) 1784-1786.
|
[45] |
H.N. Kim, Z. Guo, W. Zhu, J. Yoon, H. Tian, Chem. Soc. Rev. 40(2011) 79-93.
|
[46] |
W. Fu, C. Yan, Z. Guo, et al., J. Am. Chem. Soc. 141(2019) 3171-3177.
|
[47] |
K. Gu, Y. Xu, H. Li, et al., J. Am. Chem. Soc. 138(2016) 5334-5340.
|
[48] |
X. Wu, X. Sun, Z. Guo, et al., J. Am. Chem. Soc. 136(2014) 3579-3588.
|
[49] |
Z. Wang, H. Wu, P. Liu, F. Zeng, S. Wu, Biomaterials 139(2017) 139-150.
|
[50] |
Y. Liu, Q. Su, M. Chen, et al., Adv. Mater. 28(2016) 6625-6630.
|
[51] |
Q. Gong, R. Zou, J. Xing, et al., Adv. Sci. 5(2018) 1700664.
|
[52] |
Y. Liu, J. Niu, W. Wang, Y. Ma, W. Lin, Adv. Sci. 5(2018) 1700966.
|
[53] |
Q. Miao, D.C. Yeo, C. Wiraja, et al., Angew. Chem. Int. Ed. 57(2018) 1256-1260.
|
[54] |
Q. Wan, S. Chen, W. Shi, L. Li, H. Ma, Angew. Chem. Int. Ed. 53(2014) 10916-10920.
|
[55] |
X. Wu, L. Li, W. Shi, Q. Gong, H. Ma, Angew. Chem. Int. Ed. 55(2016) 14728-14732.
|
[56] |
G. Xu, Q. Yan, X. Lv, et al., Angew. Chem. Int. Ed. 57(2018) 3626-3630.
|
[57] |
X. Zhen, J. Zhang, J. Huang, et al., Angew. Chem. Int. Ed. 57(2018) 7804-7808.
|
[58] |
H.J. Chen, C.Y. Chew, E.H. Chang, et al., J. Am. Chem. Soc. 140(2018) 5224-5234.
|
[59] |
S. Chen, Y. Hong, Y. Liu, et al., J. Am. Chem. Soc. 135(2013) 4926-4929.
|
[60] |
D. Cheng, J. Peng, Y. Lv, et al., J. Am. Chem. Soc. 141(2019) 6352-6361.
|
[61] |
M. Collot, T.K. Fam, P. Ashokkumar, et al., J. Am. Chem. Soc. 140(2018) 5401-5411.
|
[62] |
C.L. Fleming, S. Li, M. Grotli, J. Andreasson, J. Am. Chem. Soc. 140(2018) 14069-14072.
|
[63] |
J. Ning, T. Liu, P. Dong, et al., J. Am. Chem. Soc. 141(2019) 1126-1134.
|
[64] |
N.I. Shank, H.H. Pham, A.S. Waggoner, B.A. Armitage, J. Am. Chem. Soc. 135(2013) 242-251.
|
[65] |
X. Wang, P. Li, Q. Ding, et al., J. Am. Chem. Soc. 141(2019) 2061-2068.
|
[66] |
A.T. Wrobel, T.C. Johnstone, A.D. Liang, S.J. Lippard, P. Rivera-Fuentes, J. Am. Chem. Soc. 136(2014) 4697-4705.
|
[67] |
R. Yan, Y. Hu, F. Liu, et al., J. Am. Chem. Soc. 141(2019) 10331-10341.
|
[68] |
L. Yuan, W. Lin, Y. Yang, H. Chen, J. Am. Chem. Soc. 134(2012) 1200-1211.
|
[69] |
L. Yuan, W. Lin, S. Zhao, et al., J. Am. Chem. Soc. 134(2012) 13510-13523.
|
[70] |
Y. Wu, S. Huang, J. Wang, et al., Nat. Commun. 9(2018) 3983.
|
[71] |
H.W. Liu, X.X. Hu, K. Li, et al., Chem. Sci. 8(2017) 7689-7695.
|
[72] |
Y. Liu, S. Wang, Y. Ma, et al., Adv. Mater. 29(2017) 1606129.
|
[73] |
G.K. Park, J.H. Lee, A. Levitz, et al., Adv. Mater. 31(2019) 1806216.
|
[74] |
X. Tan, S. Luo, L. Long, et al., Adv. Mater. 29(2017) 1704196.
|
[75] |
Y. Wang, S. Luo, C. Zhang, et al., Adv. Mater. 30(2018) 1800475.
|
[76] |
H. Li, X. Li, W. Shi, Y. Xu, H. Ma, Angew. Chem. Int. Ed. 57(2018) 12830-12834.
|
[77] |
M. Li, A. Lee, K.L. Kim, et al., Angew. Chem. Int. Ed. 57(2018) 2120-2125.
|
[78] |
R.R. Nani, A.P. Gorka, T. Nagaya, H. Kobayashi, M.J. Schnermann, Angew. Chem. Int. Ed. 54(2015) 13635-13638.
|
[79] |
J. Peng, A. Samanta, X. Zeng, et al., Angew. Chem. Int. Ed. 56(2017) 4165-4169.
|
[80] |
D. Su, C.L. Teoh, S.J. Park, et al., Chem 4(2018) 1128-1138.
|
[81] |
Z.Q. Xu, X.T. Huang, X. Han, et al., Chem 4(2018) 1609-1628.
|
[82] |
W. Sun, S. Guo, C. Hu, J. Fan, X. Peng, Chem. Rev. 116(2016) 7768-7817.
|
[83] |
A. Chevalier, Y. Zhang, O.M. Khdour, J.B. Kaye, S.M. Hecht, J. Am. Chem. Soc. 138(2016) 12009-12012.
|
[84] |
V. Glembockyte, R. Wieneke, K. Gatterdam, et al., J. Am. Chem. Soc.140(2018) 11006-11012.
|
[85] |
X. Jia, Q. Chen, Y. Yang, et al., J. Am. Chem. Soc. 138(2016) 10778-10781.
|
[86] |
N. Karton-Lifshin, L. Albertazzi, M. Bendikov, P.S. Baran, D. Shabat, J. Am. Chem. Soc. 134(2012) 20412-20420.
|
[87] |
Y. Li, Y. Sun, J. Li, et al., J. Am. Chem. Soc. 137(2015) 6407-6416.
|
[88] |
S.Y. Lim, K.H. Hong, D.I. Kim, H. Kwon, H.J. Kim, J. Am. Chem. Soc. 136(2014) 7018-7025.
|
[89] |
Y. Liu, J. Zhou, L. Wang, et al., J. Am. Chem. Soc. 138(2016) 12368-12374.
|
[90] |
T. Ma, Y. Hou, J. Zeng, et al., J. Am. Chem. Soc. 140(2018) 211-218.
|
[91] |
T.Myochin,K.Kiyose,K.Hanaoka,etal.,J.Am.Chem.Soc.133(2011)3401-3409.
|
[92] |
J. Yin, Y. Kwon, D. Kim, et al., J. Am. Chem. Soc. 136(2014) 5351-5358.
|
[93] |
K. Zhou, H. Liu, S. Zhang, et al., J. Am. Chem. Soc. 134(2012) 7803-7811.
|
[94] |
X. Zhao, C.X. Yang, L.G. Chen, X.P. Yan, Nat. Commun. 8(2017) 14998.
|
[95] |
X. Zheng, X. Wang, H. Mao, et al., Nat. Commun. 6(2015) 5834.
|
[96] |
Z. Guo, G.H. Kim, J. Yoon, I. Shin, Nat. Protoc. 9(2014) 1245-1254.
|
[97] |
J. Yin, Y. Kwon, D. Kim, et al., Nat. Protoc. 10(2015) 1742-1754.
|
[98] |
Z. Yang, J.H. Lee, H.M. Jeon, et al., J. Am. Chem. Soc. 135(2013) 11657-11662.
|
[99] |
M. Ye, X. Wang, J. Tang, et al., Chem. Sci. 7(2016) 4958-4965.
|
[100] |
Z.Q. Guo, Y.G. Ma, Y.J. Liu, et al., Sci. China Chem. 61(2018) 1293-1300.
|
[101] |
N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Chem. Rev. 116(2016) 2602-2663.
|
[102] |
X. He, Z. Zhao, L.H. Xiong, et al., J. Am. Chem. Soc. 140(2018) 6904-6911.
|
[103] |
A. Nicol, R.T.K. Kwok, C. Chen, et al., J. Am. Chem. Soc. 139(2017) 14792-14799.
|
[104] |
J. Qi, C. Chen, X. Zhang, et al., Nat. Commun. 9(2018) 1848.
|
[105] |
Y. Liu, S. Zhu, K. Gu, et al., ACS Appl. Mater. Inter. 9(2017) 29496-29504.
|
[106] |
Q. Li, Q. Wang, S. Wang, et al., Adv. Therapeutics 1(2018) 1800093.
|
[107] |
Q. Zhou, S. Shao, et al., Nat. Nanotechnol. 14(2019) 799-809.
|
[108] |
C. Yan, Z. Guo, Y. Shen, et al., Chem. Sci. 9(2018) 4959-4969.
|
[109] |
C. Yan, Z. Guo, Y. Liu, et al., Chem. Sci. 9(2018) 6176-6182.
|
|
|
|